无线信道中ph和ph^2的场景

使用 p h ph ph的情况:

Rayleigh 分布的随机变量可以通过两个独立且相同分布的零均值、高斯分布的随机变量表示。设两个高斯随机变量为 X ∼ N ( 0 , σ 2 ) X \sim \mathcal{N}(0, \sigma^2) X∼N(0,σ2)和 Y ∼ N ( 0 , σ 2 ) Y \sim \mathcal{N}(0, \sigma^2) Y∼N(0,σ2),Rayleigh 分布的随机变量可以用以下高斯函数的形式表示:

γ = X 2 + Y 2 \gamma = \sqrt{X^2 + Y^2} γ=X2+Y2

其中 ( X ) 和 ( Y ) 是独立的正态分布随机变量,均值为 0,方差为 σ 2 \sigma^2 σ2。

对于代码 np.random.rayleigh(scale=1, size=10),尺度参数 σ \sigma σ 取 1,因此数学上可以表示为:

γ i = X i 2 + Y i 2 , i = 1 , 2 , ... , 10 \gamma_i = \sqrt{X_i^2 + Y_i^2}, \quad i=1, 2, \dots, 10 γi=Xi2+Yi2 ,i=1,2,...,10

其中 X i ∼ N ( 0 , 1 ) X_i \sim \mathcal{N}(0, 1) Xi∼N(0,1) 且 Y i ∼ N ( 0 , 1 ) Y_i \sim \mathcal{N}(0, 1) Yi∼N(0,1)。

一般来说,此时的生成的信道h是一个正数,无须平方,且直接使用ph,例如:

使用 p h 2 ph^2 ph2的情况:

一般来说,此时的生成的信道h是一个复数,所以要用 p h 2 ph^2 ph2

(注:Resource Optimization for Semantic-Aware Networks with Task Offloading)

关于瑞利分布

Rayleigh 分布的概率密度函数(PDF)为:

f ( x ; σ ) = x σ 2 exp ⁡ ( − x 2 2 σ 2 ) , x ≥ 0 f(x; \sigma) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad x \geq 0 f(x;σ)=σ2xexp(−2σ2x2),x≥0

其中:

  • x x x 是随机变量的值。
  • σ \sigma σ 是尺度参数(scale parameter)。
  • f ( x ) f(x) f(x) 是 x x x 处的概率密度。

Rayleigh 分布常用于描述从二维独立高斯分布中获得的向量长度,例如信道衰落模型中的振幅。

Rayleigh 分布的累积分布函数(CDF)为:

F ( x ; σ ) = 1 − exp ⁡ ( − x 2 2 σ 2 ) , x ≥ 0 F(x; \sigma) = 1 - \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad x \geq 0 F(x;σ)=1−exp(−2σ2x2),x≥0

其中:

  • x x x是随机变量的值,
  • σ \sigma σ 是尺度参数(scale parameter)。

这个公式表示从 0 到 x x x的概率累积,也就是小于或等于 x x x的随机变量值的概率。

相关推荐
如果你想拥有什么先让自己配得上拥有10 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝11 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo13 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
zzc92114 天前
不同程度多径效应影响下的无线通信网络电磁信号仿真数据生成程序
网络·matlab·数据集·无线信道·无线通信网络拓扑推理·多径效应
TomcatLikeYou14 天前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论
phoenix@Capricornus16 天前
期望最大化(EM)算法的推导——Q函数
算法·机器学习·概率论
Algo-hx17 天前
概率论的基本概念:开启不确定性世界的数学之旅
概率论
Algo-hx17 天前
随机变量及其分布:概率论的量化核心
概率论
小钻风336618 天前
概率论几大分布的由来
概率论
猿饵块18 天前
slam--高斯分布
概率论