无线信道中ph和ph^2的场景

使用 p h ph ph的情况:

Rayleigh 分布的随机变量可以通过两个独立且相同分布的零均值、高斯分布的随机变量表示。设两个高斯随机变量为 X ∼ N ( 0 , σ 2 ) X \sim \mathcal{N}(0, \sigma^2) X∼N(0,σ2)和 Y ∼ N ( 0 , σ 2 ) Y \sim \mathcal{N}(0, \sigma^2) Y∼N(0,σ2),Rayleigh 分布的随机变量可以用以下高斯函数的形式表示:

γ = X 2 + Y 2 \gamma = \sqrt{X^2 + Y^2} γ=X2+Y2

其中 ( X ) 和 ( Y ) 是独立的正态分布随机变量,均值为 0,方差为 σ 2 \sigma^2 σ2。

对于代码 np.random.rayleigh(scale=1, size=10),尺度参数 σ \sigma σ 取 1,因此数学上可以表示为:

γ i = X i 2 + Y i 2 , i = 1 , 2 , ... , 10 \gamma_i = \sqrt{X_i^2 + Y_i^2}, \quad i=1, 2, \dots, 10 γi=Xi2+Yi2 ,i=1,2,...,10

其中 X i ∼ N ( 0 , 1 ) X_i \sim \mathcal{N}(0, 1) Xi∼N(0,1) 且 Y i ∼ N ( 0 , 1 ) Y_i \sim \mathcal{N}(0, 1) Yi∼N(0,1)。

一般来说,此时的生成的信道h是一个正数,无须平方,且直接使用ph,例如:

使用 p h 2 ph^2 ph2的情况:

一般来说,此时的生成的信道h是一个复数,所以要用 p h 2 ph^2 ph2

(注:Resource Optimization for Semantic-Aware Networks with Task Offloading)

关于瑞利分布

Rayleigh 分布的概率密度函数(PDF)为:

f ( x ; σ ) = x σ 2 exp ⁡ ( − x 2 2 σ 2 ) , x ≥ 0 f(x; \sigma) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad x \geq 0 f(x;σ)=σ2xexp(−2σ2x2),x≥0

其中:

  • x x x 是随机变量的值。
  • σ \sigma σ 是尺度参数(scale parameter)。
  • f ( x ) f(x) f(x) 是 x x x 处的概率密度。

Rayleigh 分布常用于描述从二维独立高斯分布中获得的向量长度,例如信道衰落模型中的振幅。

Rayleigh 分布的累积分布函数(CDF)为:

F ( x ; σ ) = 1 − exp ⁡ ( − x 2 2 σ 2 ) , x ≥ 0 F(x; \sigma) = 1 - \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad x \geq 0 F(x;σ)=1−exp(−2σ2x2),x≥0

其中:

  • x x x是随机变量的值,
  • σ \sigma σ 是尺度参数(scale parameter)。

这个公式表示从 0 到 x x x的概率累积,也就是小于或等于 x x x的随机变量值的概率。

相关推荐
杰瑞不懂代码3 天前
【公式推导】AMP算法比BP算法强在哪(二)
python·算法·机器学习·概率论
浅川.253 天前
概率论与数理统计:期末复习梳理
概率论·数理统计
雪不下3 天前
计算机中的数学:概率(6)
人工智能·机器学习·概率论
黎茗Dawn3 天前
DDPM-明确 [特殊字符] [特殊字符] 系数
概率论
Cathy Bryant4 天前
概率论直觉(三):边缘化
笔记·机器学习·数学建模·概率论
TDengine (老段)4 天前
TDengine 统计函数 VAR_SAMP 用户手册
大数据·数据库·物联网·概率论·时序数据库·tdengine·涛思数据
oscar9994 天前
概率论与数理统计第四章 随机变量的数字特征
概率论·数字特征
杰瑞不懂代码4 天前
【公式推导】AMP算法比BP算法强在哪(一)
python·算法·机器学习·概率论
oscar9995 天前
概率论与数理统计第一章 概率论的基本概念
概率论
oscar9995 天前
概率论与数理统计第二章 随机变量及其分布
概率论·随机变量及其分布