OpenCV视频处理练习案例-学习篇

需要实现的功能:

用OpenCV打开一段视频,将每一帧画面压缩成540p,对画面进行垂

直翻转,转为黑白,然后添加高斯噪声,把处理好的每一帧画面保存

成一个mp4文件保存到本地

Python代码如下:

python 复制代码
import cv2
import numpy as np #高斯噪音需要一些数学运算

#给视频添加高斯噪声类
def add_gaussion_noise(image): #image传入的是视频中读取到的每一个画面
    rows, col = image.shape #获取这个画面的尺寸信息 有多少行rows 有多少列col
    mean = 0 #设定平均值为0
    sigma = 15 #∑ 数学中的求和号
    gauss = np.random.normal(mean, sigma, (rows, col)) #做出一个高斯噪声(纯噪声)
    noisy = image + gauss #把画面和噪声相叠加后产生带噪声的图片
    noisy_img = np.clip(noisy, 0, 255) #np.clip限定带噪声的像素值的范围在0-255
    return noisy_img.astype(np.uint8) #把图片转成整数形式返回

#输入和输出视频文件名
input_video = "./outdoor.mp4"
output_video = "./output02.mp4"

#打开输入视频
cap = cv2.VideoCapture(input_video)

#获取视频的帧率和帧大小
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

#计算新的帧大小(540p)
new_height = 540
new_width = int((new_height / frame_height) * frame_width)

#创建视频写入对象
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video, fourcc, fps, (new_width, new_height),isColor=False)
#在循环中不停读取每一帧做处理
while True:
    ret, frame = cap.read()
    if not ret:
        break

    #调整帧率大小
    frame = cv2.resize(frame, (new_width, new_height))
    #转换为灰度图像
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    #垂直翻转画面
    frame = cv2.flip(frame, 1)
    #添加高斯噪声
    frame = add_gaussion_noise(frame)
    #写出输出视频
    out.write(frame)

#释放资源并关闭窗口
cap.release()
out.release()
cv2.destroyAllWindows()

生成的文件检测后是没问题的

相关推荐
半夏知半秋4 分钟前
kcp学习-通用的kcp lua绑定
服务器·开发语言·笔记·后端·学习
Duang007_7 分钟前
【LeetCodeHot100 超详细Agent启发版本】两数之和 (Two Sum)
java·人工智能·python
曾浩轩18 分钟前
图灵完备Turing Complete 2
学习·图灵完备
TEL1892462247719 分钟前
IT6225B:USB-C(DP Alt 模式)及电源传输控制器 内置双通道 DP 1.4 转 HDMI 2.0 转换器
音视频·实时音视频·视频编解码
企业对冲系统官34 分钟前
基差风险管理系统集成说明与接口规范
大数据·运维·python·算法·区块链·github
花酒锄作田44 分钟前
[python]Flask - Tracking ID的设计
python·flask·pytest
PeterClerk1 小时前
计算机视觉常用指标(Metrics)速查与解释(持续更新)
人工智能·python·深度学习·计算机视觉·benchmark·评测
A小码哥1 小时前
跟着AI学习谷歌最新的通用商业协议(UCP)实操步骤
人工智能·学习
科技林总1 小时前
【系统分析师】4.2 网络体系结构
学习
且去填词1 小时前
深入理解 GMP 模型:Go 高并发的基石
开发语言·后端·学习·算法·面试·golang·go