libsvm 数据格式简介

libsvm文件数据格式:

xml 复制代码
<label> <index1>:<value1> <index2>:<value2> ...

其中,

<label> 是训练数据集的目标值,对于分类,它是标识某类的整数(支持多个类);对于回归,是任意实数。

<index> 是以1开始的整数,可以是不连续的;

<value>为实数,也就是我们常说的自变量。

即:lable 数据集的标签,index为特征,value为特征值。

例如:

复制代码
+1  1:0.708333  2:1   3:1           4:-0.320755
-1  1:0.583333  2:-1  3:0.333333    4:-0.603774 
+1  1:0.166667  2:1   3:-0.333333   4:-0.433962 
-1  1:0.458333  2:1   3:1           4:-0.358491 

需要注意的是,如果特征值value为0,则此特征可以省略,index可以不连续。如:

复制代码
-15 1:0.708 3:-0.3333

表明第2个特征值为0,从编程的角度来说,这样做可以减少内存的使用,并提高做矩阵内积时的运算速度。

需要注意以下几点:

  • 标签列label可以重复;
  • 索引index要从1开始;
  • 数据的长度是以最大列数为准的,因为特征值value为0,则此特征index可以省略。因此最好是要保持数据列数一致;

Spark 中自带的 data/mllib/sample_libsvm_data.txt 介绍:

总共100个实例,label的取值为:0和1。有692个特征。

scala 复制代码
scala> val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt)
data: org.apache.spark.sql.DataFrame = [label: double, features: vector]

scala> data.count
res1: Long = 100

scala> data.show()
+-----+--------------------+
|label|            features|
+-----+--------------------+
|  0.0|(692,[127,128,129...|
|  1.0|(692,[158,159,160...|
|  1.0|(692,[124,125,126...|
|  1.0|(692,[152,153,154...|
|  1.0|(692,[151,152,153...|
|  0.0|(692,[129,130,131...|
|  1.0|(692,[158,159,160...|
|  1.0|(692,[99,100,101,...|
|  0.0|(692,[154,155,156...|
|  0.0|(692,[127,128,129...|
|  1.0|(692,[154,155,156...|
|  0.0|(692,[153,154,155...|
|  0.0|(692,[151,152,153...|
|  1.0|(692,[129,130,131...|
|  0.0|(692,[154,155,156...|
|  1.0|(692,[150,151,152...|
|  0.0|(692,[124,125,126...|
|  0.0|(692,[152,153,154...|
|  1.0|(692,[97,98,99,12...|
|  1.0|(692,[124,125,126...|
+-----+--------------------+
only showing top 20 rows
相关推荐
SHIPKING3931 小时前
【机器学习&深度学习】什么是下游任务模型?
人工智能·深度学习·机器学习
巴伦是只猫1 小时前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
巴伦是只猫6 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手6 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
LCG元7 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
生态遥感监测笔记8 小时前
GEE利用已有土地利用数据选取样本点并进行分类
人工智能·算法·机器学习·分类·数据挖掘
刘海东刘海东9 小时前
结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
人工智能·算法·机器学习
路溪非溪10 小时前
机器学习之线性回归
人工智能·机器学习·线性回归
Blossom.11812 小时前
机器学习在智能制造业中的应用:质量检测与设备故障预测
人工智能·深度学习·神经网络·机器学习·机器人·tensorflow·sklearn