libsvm 数据格式简介

libsvm文件数据格式:

xml 复制代码
<label> <index1>:<value1> <index2>:<value2> ...

其中,

<label> 是训练数据集的目标值,对于分类,它是标识某类的整数(支持多个类);对于回归,是任意实数。

<index> 是以1开始的整数,可以是不连续的;

<value>为实数,也就是我们常说的自变量。

即:lable 数据集的标签,index为特征,value为特征值。

例如:

复制代码
+1  1:0.708333  2:1   3:1           4:-0.320755
-1  1:0.583333  2:-1  3:0.333333    4:-0.603774 
+1  1:0.166667  2:1   3:-0.333333   4:-0.433962 
-1  1:0.458333  2:1   3:1           4:-0.358491 

需要注意的是,如果特征值value为0,则此特征可以省略,index可以不连续。如:

复制代码
-15 1:0.708 3:-0.3333

表明第2个特征值为0,从编程的角度来说,这样做可以减少内存的使用,并提高做矩阵内积时的运算速度。

需要注意以下几点:

  • 标签列label可以重复;
  • 索引index要从1开始;
  • 数据的长度是以最大列数为准的,因为特征值value为0,则此特征index可以省略。因此最好是要保持数据列数一致;

Spark 中自带的 data/mllib/sample_libsvm_data.txt 介绍:

总共100个实例,label的取值为:0和1。有692个特征。

scala 复制代码
scala> val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt)
data: org.apache.spark.sql.DataFrame = [label: double, features: vector]

scala> data.count
res1: Long = 100

scala> data.show()
+-----+--------------------+
|label|            features|
+-----+--------------------+
|  0.0|(692,[127,128,129...|
|  1.0|(692,[158,159,160...|
|  1.0|(692,[124,125,126...|
|  1.0|(692,[152,153,154...|
|  1.0|(692,[151,152,153...|
|  0.0|(692,[129,130,131...|
|  1.0|(692,[158,159,160...|
|  1.0|(692,[99,100,101,...|
|  0.0|(692,[154,155,156...|
|  0.0|(692,[127,128,129...|
|  1.0|(692,[154,155,156...|
|  0.0|(692,[153,154,155...|
|  0.0|(692,[151,152,153...|
|  1.0|(692,[129,130,131...|
|  0.0|(692,[154,155,156...|
|  1.0|(692,[150,151,152...|
|  0.0|(692,[124,125,126...|
|  0.0|(692,[152,153,154...|
|  1.0|(692,[97,98,99,12...|
|  1.0|(692,[124,125,126...|
+-----+--------------------+
only showing top 20 rows
相关推荐
AI大模型测试1 小时前
大龄程序员想转行到AI大模型,好转吗?
人工智能·深度学习·机器学习·ai·语言模型·职场和发展·大模型
金融小师妹3 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
LucDelton5 小时前
模型微调思路
人工智能·深度学习·机器学习
Fleshy数模6 小时前
从一条直线开始:线性回归的底层逻辑与实战
人工智能·机器学习·概率论
流㶡6 小时前
逻辑回归实战:从原理到不平衡数据优化(含欠拟合/过拟合诊断与召回率提升)
算法·机器学习·逻辑回归
lrh1228007 小时前
详解决策树算法:分类任务核心原理、形成流程与剪枝优化
算法·决策树·机器学习
冰西瓜6007 小时前
从项目入手机器学习(五)—— 机器学习尝试
人工智能·深度学习·机器学习
Coding茶水间7 小时前
基于深度学习的狗品种检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
Fleshy数模8 小时前
从欠拟合到正则化:用逻辑回归破解信用卡失信检测的召回率困境
算法·机器学习·逻辑回归
jackywine68 小时前
零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)有何区别?AI 是怎么“猜“出来的
人工智能·机器学习