《征服数据结构》差分数组

摘要:

1,差分数组的介绍

2,二维差分数组的介绍

1,差分数组的介绍

差分数组主要是操作区间的,关于区间操作的数据结构比较多,除了前面讲的《稀疏表》,还有树状数组,线段树,伸展树Splay等。尤其是后面两个在信奥赛和蓝桥杯的比赛中用到的还是比较多的 ,之后我们也都会一一介绍、这里先看一下差分数组。

假设有这样一个问题,给你一个数组nums,先对区间[a,b]中每个元素加 3 ,在对区间[c,d]每个元素减 5 ...... ,这样非常频繁的区间修改,常规的做法可以一个个计算。

Java 代码:

go 复制代码
// 给闭区间[a,b]中的每个元素都增加 k 。
public void increment(int[] nums, int a, int b, int k) {
    for (int i = a; i <= b; i++) {
        nums[i] += k;
    }
}

C++ 代码:

go 复制代码
// 给闭区间[a,b]中的每个元素都增加 k 。
void increment(vector<int> &nums, int a, int b, int k) {
    for (int i = a; i <= b; i++) {
        nums[i] += k;
    }
}

频繁对数组的一段区间进行加减,如果一个个去操作,很明显效率很差,这个时候我们可以使用差分数组,差分数组就是原始数组相邻元素之间的差所构成的数组。定义差分数组d[n],则 d[i] = nums[i] − nums[i−1] ,其中 d[0] = nums[0] 。

可以看到原数组的元素就是差分数组的前缀和,如果要计算nums[i],只需要把差分数组 d 的前 i 个元素相加即可。

ini 复制代码
nums[0] = d[0]
num[3] = d[0] + d[1] + d[2] + d[3]

有了差分数组,如果对区间 [a,b] 中的每个元素加 3 ,不需要在一个个操作,只需要在两端修改。如下图所示,可以看到原数组需要修改区间内的所有值,而差分数组只需要修改两个值即可,一个是给d[a]加上 3 ,一个是给d[b+1]减去 3 。

javascript 复制代码
d[a] += 3;
d[b+1] -= 3;// 注意不能越界
相关推荐
NAGNIP33 分钟前
一文搞懂FlashAttention怎么提升速度的?
人工智能·算法
Codebee1 小时前
OneCode图生代码技术深度解析:从可视化设计到注解驱动实现的全链路架构
css·人工智能·算法
刘大猫261 小时前
Datax安装及基本使用
java·人工智能·算法
一定要AK2 小时前
萌新赛练习
数据结构
Gyoku Mint4 小时前
深度学习×第4卷:Pytorch实战——她第一次用张量去拟合你的轨迹
人工智能·pytorch·python·深度学习·神经网络·算法·聚类
葫三生5 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室7 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安9 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董10 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习