神经网络骨架nn.Module

文章目录

一、认识nn.Module

nn.Module 是 PyTorch 中的一个核心类,它是所有神经网络模块的基类。在 PyTorch 中构建模型时,通常会继承这个类来创建自定义的网络结构。nn.Module 提供了一系列用于构建神经网络的工具和方法,

具体有:

  • 层注册:可以通过 add_module 方法或者在 init 方法中使用 self. =
    的方式向模块中添加子模块(即层)。这些子模块可以是其他 nn.Module 的实例,如 nn.Linear、nn.Conv2d 等。
  • 参数管理:nn.Module 自动跟踪所有子模块的参数(如权重和偏置),使得参数的管理和更新变得更加方便。
  • 前向传播:通过定义 forward 方法来指定模型的前向传播逻辑。当模型被调用时(例如 model(input)),forward
    方法会被执行,并且输入数据会按照 forward 方法中定义的方式进行处理。
  • 训练模式与评估模式:nn.Module 有一个 .train() 方法用于设置模型为训练模式(启用 Dropout 等),以及一个
    .eval() 方法用于设置模型为评估模式(禁用 Dropout 等)。
  • 参数优化:nn.Module 可以与优化器(如 torch.optim.Adam 或
    torch.optim.SGD)配合使用,优化器会利用模型的参数进行梯度下降等优化操作。

二、nn.Module的基础加1操作

进行一个非常简单的操作:对输入数据加1。

bash 复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        #这行代码调用了父类(即nn.Module)的初始化函数。在PyTorch中,这是必要的,因为它会设置一些内部结构,使得模型可以正确地注册参数和子模块。
        super().__init__()

    #这是定义模型前向传播的函数。在PyTorch中,forward函数指定了如何将输入数据转换为输出数据。这个函数必须定义,因为它是模型的核心。
    def forward(self,input):
        output = input + 1
        return output

tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

运行结果:

注:这是因为将一个值为 1.0 的张量 x 传递给模型,模型将其增加 1,所以输出是 2.0。

相关推荐
程序设计实验室4 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
飞哥数智坊5 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三5 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯6 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet8 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算8 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
用户2519162427119 小时前
Python之语言特点
python
机器之心9 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
刘立军9 小时前
使用pyHugeGraph查询HugeGraph图数据
python·graphql
Juchecar10 小时前
交叉熵:深度学习中最常用的损失函数
人工智能