神经网络骨架nn.Module

文章目录

一、认识nn.Module

nn.Module 是 PyTorch 中的一个核心类,它是所有神经网络模块的基类。在 PyTorch 中构建模型时,通常会继承这个类来创建自定义的网络结构。nn.Module 提供了一系列用于构建神经网络的工具和方法,

具体有:

  • 层注册:可以通过 add_module 方法或者在 init 方法中使用 self. =
    的方式向模块中添加子模块(即层)。这些子模块可以是其他 nn.Module 的实例,如 nn.Linear、nn.Conv2d 等。
  • 参数管理:nn.Module 自动跟踪所有子模块的参数(如权重和偏置),使得参数的管理和更新变得更加方便。
  • 前向传播:通过定义 forward 方法来指定模型的前向传播逻辑。当模型被调用时(例如 model(input)),forward
    方法会被执行,并且输入数据会按照 forward 方法中定义的方式进行处理。
  • 训练模式与评估模式:nn.Module 有一个 .train() 方法用于设置模型为训练模式(启用 Dropout 等),以及一个
    .eval() 方法用于设置模型为评估模式(禁用 Dropout 等)。
  • 参数优化:nn.Module 可以与优化器(如 torch.optim.Adam 或
    torch.optim.SGD)配合使用,优化器会利用模型的参数进行梯度下降等优化操作。

二、nn.Module的基础加1操作

进行一个非常简单的操作:对输入数据加1。

bash 复制代码
import torch
from torch import nn

class Tudui(nn.Module):
    def __init__(self):
        #这行代码调用了父类(即nn.Module)的初始化函数。在PyTorch中,这是必要的,因为它会设置一些内部结构,使得模型可以正确地注册参数和子模块。
        super().__init__()

    #这是定义模型前向传播的函数。在PyTorch中,forward函数指定了如何将输入数据转换为输出数据。这个函数必须定义,因为它是模型的核心。
    def forward(self,input):
        output = input + 1
        return output

tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

运行结果:

注:这是因为将一个值为 1.0 的张量 x 传递给模型,模型将其增加 1,所以输出是 2.0。

相关推荐
岱宗夫up2 分钟前
基于ROS的视觉导航系统实战:黑线循迹+激光笔跟随双模态实现(冰达机器人Nano改造)
linux·python·机器人·ros
慧都小项6 分钟前
办公文档平台ONLYOFFICE如何使用AI进行金融图表的描述识别
人工智能·金融
花间相见8 分钟前
【AI开发】—— Ollama安装与部署
人工智能
星爷AG I12 分钟前
9-17 客体连续性(AGI基础理论)
人工智能·agi
勇气要爆发22 分钟前
【AI扫盲】大模型(LLM)原理详解:从 DeepSeek 到 GPT-5 全面解析 (2026最新版)
人工智能·gpt·机器学习·llm·微调·多模态·预训练
秦ぅ时24 分钟前
【OpenAI】claude-opus-4-20250514版本功能详解与应用示例获取OpenAI API KEY的两种方式,开发者必看全方面教程!
人工智能·深度学习
LeeeX!35 分钟前
YOLO12全面解析与安卓平台NCNN部署实战:高效注意力机制的落地实践(待更新)
深度学习·yolo·视觉检测·边缘计算
别或许38 分钟前
python中的异步调用(直接使用教程)
java·前端·python
RockHopper202538 分钟前
流程工业的时序模型与机制论3M法则
人工智能·机器学习·智能制造·机制论
中烟创新40 分钟前
烟草企业合规审查AI助手,助力企业高效、精准地应对合规挑战
人工智能