Opencv中的直方图(2)计算图像的直方图函数calcHist()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

计算一组数组的直方图。

函数 cv::calcHist 计算一个或多个数组的直方图。用于递增直方图bin的元组的元素是从相同位置的相应输入数组中获取的。下面的示例展示了如何为彩色图像计算一个2D色调-饱和度直方图。

cpp 复制代码
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
int main( int argc, char** argv )
{
    Mat src, hsv;
    if( argc != 2 || !(src=imread(argv[1], IMREAD_COLOR)).data )
        return -1;
    cvtColor(src, hsv, COLOR_BGR2HSV);
    // Quantize the hue to 30 levels
    // and the saturation to 32 levels
    int hbins = 30, sbins = 32;
    int histSize[] = {hbins, sbins};
    // hue varies from 0 to 179, see cvtColor
    float hranges[] = { 0, 180 };
    // saturation varies from 0 (black-gray-white) to
    // 255 (pure spectrum color)
    float sranges[] = { 0, 256 };
    const float* ranges[] = { hranges, sranges };
    MatND hist;
    // we compute the histogram from the 0-th and 1-st channels
    int channels[] = {0, 1};
    calcHist( &hsv, 1, channels, Mat(), // do not use mask
             hist, 2, histSize, ranges,
             true, // the histogram is uniform
             false );
    double maxVal=0;
    minMaxLoc(hist, 0, &maxVal, 0, 0);
    int scale = 10;
    Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3);
    for( int h = 0; h < hbins; h++ )
        for( int s = 0; s < sbins; s++ )
        {
            float binVal = hist.at<float>(h, s);
            int intensity = cvRound(binVal*255/maxVal);
            rectangle( histImg, Point(h*scale, s*scale),
                        Point( (h+1)*scale - 1, (s+1)*scale - 1),
                        Scalar::all(intensity),
                        -1 );
        }
    namedWindow( "Source", 1 );
    imshow( "Source", src );
    namedWindow( "H-S Histogram", 1 );
    imshow( "H-S Histogram", histImg );
    waitKey();
}

函数原型1

cpp 复制代码
void cv::calcHist	
(
	const Mat * 	images,
	int 	nimages,
	const int * 	channels,
	InputArray 	mask,
	OutputArray 	hist,
	int 	dims,
	const int * 	histSize,
	const float ** 	ranges,
	bool 	uniform = true,
	bool 	accumulate = false 
)		

参数1

  • 参数 images 源数组。它们都应该具有相同的深度(CV_8U, CV_16U 或 CV_32F),并且具有相同的尺寸。每一个都可以有任意数量的通道。
  • 参数nimages 源图像的数量。
  • 参数channels 用于计算直方图的各维通道列表。第一个数组的通道编号从 0 到 images[0].channels()-1,第二个数组的通道编号从 images[0].channels() 到 images[0].channels() + images[1].channels()-1,依此类推。
  • 参数mask O可选掩码。如果矩阵不为空,它必须是一个与 images[i] 同尺寸的8位数组。非零的掩码元素标记了计入直方图的数组元素。
  • 参数hist 输出直方图,它是一个稠密或稀疏的多维数组。
  • 参数dims 直方图的维数,必须是正数且不大于 CV_MAX_DIMS(在当前 OpenCV 版本中等于 32)。
  • 参数histSize 直方图每个维度的大小数组。
  • 参数ranges 每个维度直方图bin边界的数组。当直方图是均匀的(uniform=true)时,对于每个维度 i,只需指定第0个直方图bin的下(包含)边界 L0 和最后一个直方图bin histSize[i]-1 的上(不包含)边界 UhistSize[i]−1。也就是说,在均匀直方图的情况下,ranges[i] 是一个包含2个元素的数组。当直方图不是均匀的(uniform=false)时,ranges[i] 包含 histSize[i]+1 个元素:L0, U0=L1, U1=L2, ..., UhistSize[i]−2=LhistSize[i]−1, UhistSize[i]−1。不在 L0 和 UhistSize[i]−1 之间的数组元素不会被计入直方图。
  • 参数uniform 指示直方图是否是均匀的标志(参见上面的描述)。
  • 参数accumulate 累积标志。如果设置,那么在分配直方图开始时不将其清空。此功能使您能够从几组数组中计算单个直方图,或随时间更新直方图。

函数原型2

这是一个重载的成员函数,为了方便而提供。它与上述函数的不同之处仅在于它接受的参数。

这个变体使用 SparseMat 作为输出。

cpp 复制代码
void cv::calcHist
(
	const Mat * 	images,
	int 	nimages,
	const int * 	channels,
	InputArray 	mask,
	SparseMat & 	hist,
	int 	dims,
	const int * 	histSize,
	const float ** 	ranges,
	bool 	uniform = true,
	bool 	accumulate = false 
)		

函数原型3

这是一个重载的成员函数,为了方便而提供。它与上述函数的不同之处仅在于它接受的参数。

这个变体只支持均匀直方图。

ranges 参数要么是一个空向量,要么是一个展平的向量,包含 histSize.size() * 2 个元素(即 histSize.size() 个元素对)。每对元素的第一个和第二个元素分别指定下界和上界。

cpp 复制代码
void cv::calcHist
(
	InputArrayOfArrays 	images,
	const std::vector< int > & 	channels,
	InputArray 	mask,
	OutputArray 	hist,
	const std::vector< int > & 	histSize,
	const std::vector< float > & 	ranges,
	bool 	accumulate = false 
)		

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat image = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/qiu.jpg", cv::IMREAD_COLOR );

    if ( image.empty() )
    {
        std::cerr << "Error: Image not found or unable to read." << std::endl;
        return -1;
    }

    // 将图像从BGR转换到HSV颜色空间
    cv::Mat hsv;
    cvtColor( image, hsv, cv::COLOR_BGR2HSV );

    // 定义直方图参数
    int hue_bins   = 180;  // 色调范围是从0到179
    int sat_bins   = 256;  // 饱和度范围是从0到255
    int histSize[] = { hue_bins, sat_bins };

    // H和S的范围
    float hue_range[]     = { 0, 180 };
    float sat_range[]     = { 0, 256 };
    const float* ranges[] = { hue_range, sat_range };

    // 指定我们要计算直方图的两个通道(Hue和Saturation)
    int channels[] = { 0, 1 };

    // 创建一个空的直方图
    cv::Mat hist;
    calcHist( &hsv, 1, channels, cv::Mat(),              // 图像,图像数量,通道,掩码
              hist, 2, histSize, ranges, true, false );  // 2D直方图,直方图尺寸,范围

    // 对直方图进行归一化,使其值在 0 到 255 之间
    cv::normalize( hist, hist, 0, 255, cv::NORM_MINMAX, -1, cv::Mat() );

    int hist_w = 512;
    int hist_h = 400;
    int bin_w  = cvRound( ( double )hist_w / hue_bins );
    cv::Mat histImage( hist_h, hist_w, CV_8UC3, cv::Scalar( 0, 0, 0 ) );

    for ( int h = 0; h < hue_bins; h++ )
        for ( int s = 0; s < sat_bins; s++ )
        {
            double binVal = hist.at< float >( h, s );  // 获取直方图值
            int val       = cvRound( binVal );         // 四舍五入
            cv::rectangle( histImage, cv::Point( h * bin_w, hist_h ), cv::Point( ( h + 1 ) * bin_w, hist_h - val ), cv::Scalar( 255, 0, 0 ), -1 );
        }
    cv::imshow( "original image", image );
    cv::imshow( "Hue-Saturation Histogram", histImage );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
阿勉要睡觉3 分钟前
计算机图形学知识点汇总
计算机视觉
IT古董15 分钟前
【漫话机器学习系列】020.正则化强度的倒数C(Inverse of regularization strength)
人工智能·机器学习
进击的小小学生17 分钟前
机器学习连载
人工智能·机器学习
Trouvaille ~28 分钟前
【机器学习】从流动到恒常,无穷中归一:积分的数学诗意
人工智能·python·机器学习·ai·数据分析·matplotlib·微积分
dundunmm36 分钟前
论文阅读:Deep Fusion Clustering Network With Reliable Structure Preservation
论文阅读·人工智能·数据挖掘·聚类·深度聚类·图聚类
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的4通道电压 250M采样终端边缘计算采集板卡,主控支持龙芯/飞腾
人工智能·边缘计算
是十一月末1 小时前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
云空1 小时前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
杭杭爸爸1 小时前
无人直播源码
人工智能·语音识别
Ainnle2 小时前
微软 CEO 萨提亚・纳德拉:回顾过去十年,展望 AI 时代的战略布局
人工智能·microsoft