Elasticsearch优化

硬件配置优化

  • 使用 SSD:优先使用固态硬盘(SSD)而非传统机械硬盘,以提高数据读写速度,尤其是对于大数据集和高并发场景。

  • 分配适当的内存:将JVM堆内存设置为物理内存的一半,且最大不超过32GB,以减少垃圾回收的影响。对于具有大量数据的节点,可以通过调整节点数量来分担内存压力。

  • 多核 CPU:使用多核处理器能够提高并发处理能力,尤其是在高并发查询和索引操作时。确保节点的CPU数量能够满足负载需求。

集群结构优化

  • 主节点和数据节点分离:将主节点与数据节点分离,以减少主节点的负载。主节点应专注于集群管理,而数据节点则专注于存储和处理数据。

  • 副本配置:根据需要合理设置副本分片的数量,使用副本提供负载均衡和容错能力。副本能够帮助分散查询请求,提升系统的响应时间。

索引优化

  • 合理设计索引映射:在创建索引时,提前定义字段的映射和类型,避免使用动态映射。根据需求明确各字段的索引属性,减少不必要的字段索引。

  • 设置合理的分片数量:根据数据规模合理设置索引的主分片数量,避免过多的分片导致管理开销增加,或过少的分片导致资源利用不均。

  • 按需使用文档值:对于需要聚合或排序的字段,启用文档值(Doc Values)以提升性能。文档值有助于提高内存使用的效率。

  • 批量写入:使用Bulk API将多个索引请求合并为一个批处理,加快索引速度。

查询优化

  • 使用过滤器而非查询:对于经常性的查询,使用过滤器以提高性能,因为缓存的过滤结果可以被重用。

  • 减少检索字段:尽量只请求需要的字段,避免返回不必要的数据,以减少IO和处理时间。

  • 避免深度分页 :在需要进行分页时,采用search_after或滚动API(Scroll API)来提高性能,而不是使用fromsize大分页。

  • 使用预计算的聚合:在适合的情况下,可以使用 Elasticsearch 的聚合功能来预先计算报表数据,减少后续请求时的计算量。

合并与刷新

  • 定期执行合并:合并小的段为更大的段,以减少查询的延迟。使用_forcemerge API来控制段的数目,降低搜索时间。

  • 调整刷新频率 :根据业务需求调整 refresh_interval,在高并发写入时可以减少刷新频率,以提升索引性能。

相关推荐
智数研析社20 分钟前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
潘达斯奈基~34 分钟前
《大数据之路1》笔记2:数据模型
大数据·笔记
寻星探路1 小时前
数据库造神计划第六天---增删改查(CRUD)(2)
java·大数据·数据库
翰林小院3 小时前
【大数据专栏】流式处理框架-Apache Fink
大数据·flink
孟意昶3 小时前
Spark专题-第一部分:Spark 核心概述(2)-Spark 应用核心组件剖析
大数据·spark·big data
一路向北North4 小时前
lucene渲染未命中最匹配的关键词和内容
搜索引擎·全文检索·lucene
IT学长编程4 小时前
计算机毕业设计 基于Hadoop的健康饮食推荐系统的设计与实现 Java 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
java·大数据·hadoop·毕业设计·课程设计·推荐算法·毕业论文
AAA修煤气灶刘哥5 小时前
Kafka 入门不踩坑!从概念到搭环境,后端 er 看完就能用
大数据·后端·kafka
在未来等你7 小时前
Elasticsearch面试精讲 Day 18:内存管理与JVM调优
大数据·分布式·elasticsearch·搜索引擎·面试
智海观潮7 小时前
Spark SQL | 目前Spark社区最活跃的组件之一
大数据·spark