机器学习概述

一,机器学习概述

1.机器学习概念

新的数据--->输入--->训练--->预测--->未知数据

人工智能>机器学习>深度学习

2.涉及学科:微积分(偏导数,向量---值函数,方向梯度),概率论(bayes定理,组合学,抽样方法),计算科学,凸分析,算法复杂度

3.机器学习发展史
1950(阿兰.图灵创造了"图灵测试")--->1957(Frank Rosenblat设计出第一个计算机神经网络感知机)--->1981(Geral Dejong提出基于解释的学习)--->1990年代机器学习的方法从知识驱动转为数据驱动--->2016年谷歌的人工智能算法打败围棋专业选手

4.机器学习应用场景

属性预测,价值评估,客户分层,异常检测,疾病检测,风险管控,个性化推荐,垃圾信息识别,智能排序,等级评分,流失预警,文本识别,图像识别,量化交易分析,用户画像,路径优化,店铺选址,资源优化,作诗作歌词,恶意软件识别,精准营销,智能投顾,搜索优化,诈骗检测,关联匹配等

二,机器学习的分类

1.机器学习算法划分
监督学习:分类,回归,排序,匹配学习
半监督学习:Transductive SVM,协同训练
非监督学习:聚类,关联
强化学习:PPO,A2C/A3C

2.机器学习一般过程

数据采集--->数据处理--->选择建模算法--->结果实施

3.无监督有监督概念
无监督:是指在未加标签的数据中,根据数据本身质检的属性对数据进行分类,相似相近的数据分为同一类,不相相似或不相近的数据分在不同的类中
有监督:通过已知数据以及其对应的输出来训练,得到耦合最优模型,再利用这个模型将所有新的数据样本映射为应用的输出结果,对输出结果进行简单的判断从而实现分类。

4.有监督常见算法

K-Means,K-Mediods,DBSCAN,Aprior,FP-Growth

三,机器学习术语与概念

  • 数据集:训练集,验证集,测试集:训练模型的数据集合
  • 样本,示例:行Record一个事件或对象
  • 属性,特征:列feature性质
  • 样本空间:属性成长空间
  • 训练数据,训练样本:模型训练
  • 学习,训练:从数据集中学得模型的过程
  • 模型,学习器:训练后的结果
  • 模型评价:评估模型性能优差过程
  • 目标函数:算法学习后得到的参数,阈值,比例等构成的函数
  • 损失函数,代价函数:评估原始数据与预测数据差距的函数评估模型效果
  • 泛化能力:机器学习的目标是使得学的模型能够很好地适用于新的样本,而不是仅仅在训练样本上工* * 作的很好,学得的模型适用于新样本的能力称之为泛化能力
  • 误差:学习到的模型在样本上的预测结果与样本的真实结果之间的差。
  • 训练误差:在训练集上
  • 泛化误差:在新样本上
  • 过拟合,欠拟合:
相关推荐
weixin_4462608538 分钟前
LocalAI:一个免费开源的AI替代方案,让创意更自由!
人工智能·开源
CAE32043 分钟前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
骄傲的心别枯萎44 分钟前
RV1126 NO.37:OPENCV的图像叠加功能
人工智能·opencv·计算机视觉·音视频·视频编解码·rv1126
HyperAI超神经44 分钟前
解决蛋白质构象异质性的原子级建模挑战!David Baker团队PLACER框架解析
人工智能·深度学习·ai·ai4s·蛋白质结构
TG:@yunlaoda360 云老大4 小时前
腾讯WAIC发布“1+3+N”AI全景图:混元3D世界模型开源,具身智能平台Tairos亮相
人工智能·3d·开源·腾讯云
这张生成的图像能检测吗4 小时前
(论文速读)Fast3R:在一个向前通道中实现1000+图像的3D重建
人工智能·深度学习·计算机视觉·3d重建
兴趣使然黄小黄7 小时前
【AI-agent】LangChain开发智能体工具流程
人工智能·microsoft·langchain
出门吃三碗饭7 小时前
Transformer前世今生——使用pytorch实现多头注意力(八)
人工智能·深度学习·transformer
l1t7 小时前
利用DeepSeek改写SQLite版本的二进制位数独求解SQL
数据库·人工智能·sql·sqlite
说私域7 小时前
开源AI智能名片链动2+1模式S2B2C商城小程序FAQ设计及其意义探究
人工智能·小程序