多维时序 | Matlab基于TCN-Transformer+LSTM双输入神经网络时间序列预测

多维时序 | Matlab基于TCN-Transformer+LSTM双输入神经网络时间序列预测

目录

效果一览

基本介绍

1.Matlab基于TCN-Transformer+LSTM双输入神经网络时间序列预测(完整源码和数据)

2.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;程序内注释详细,excel数据,直接替换数据就可以用。

3.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。

4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据下载私信博主回复Matlab基于TCN-Transformer+LSTM双输入神经网络时间序列预测
matlab 复制代码
%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1, :), 1, kim * or_dim), result(i + kim + zim - 1, :)];
end

%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%%  参数设置
fun = @getObjValue;    % 目标函数
dim = 2;               % 优化参数个数
lb  = [0.1, 0.1];      % 优化参数目标下限
ub  = [ 800,  800];    % 优化参数目标上限
pop = 20;              % 种群数量
Max_iteration = 30;    % 最大迭代次数   

%%  优化算法
[Best_score,Best_pos, curve] = SSA(pop, Max_iteration, lb, ub, dim, fun); 

%%  获取最优参数
bestc = Best_pos(1, 1);  
bestg = Best_pos(1, 2); 

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

相关推荐
不惑_10 小时前
通俗理解GAN的训练过程
人工智能·神经网络·生成对抗网络
可触的未来,发芽的智生12 小时前
发现:认知的普适节律 发现思维的8次迭代量子
javascript·python·神经网络·程序人生·自然语言处理
power 雀儿13 小时前
Transformer输入嵌入与绝对位置编码
人工智能·深度学习·transformer
薛不痒13 小时前
深度学习的补充:神经网络处理回归问题(人脸关键点识别)&自然语言处理的介绍
深度学习·神经网络·回归
攒了一袋星辰14 小时前
Transformer词向量与自注意力机制
人工智能·深度学习·transformer
yongui4783415 小时前
混凝土二维随机骨料模型 MATLAB 实现
算法·matlab
我爱C编程15 小时前
5G下行信号的频谱结构及模糊函数特征matlab仿真与分析
5g·matlab·模糊函数·频谱结构
肾透侧视攻城狮17 小时前
《PyTorch神经网络从开发到调试:实战技巧、可视化与兼容性问题解决方案》
神经网络·语言模型·二分类任务·实现前馈神经网络·可视化执行梯度下降算法·matplotlib版本兼容性·pytorch实现二分类任务
yong999017 小时前
基于势能原理的圆柱齿轮啮合刚度计算MATLAB程序实现
开发语言·matlab
铁手飞鹰17 小时前
[深度学习]Vision Transformer
人工智能·pytorch·python·深度学习·transformer