nosql数据库技术与应用知识点

Nosql知识回顾

大数据处理流程

  • 数据采集(flume、爬虫、传感器)
  • 数据存储(本门课程NoSQL所处的阶段) Hdfs、MongoDB、HBase等
  • 数据清洗(入仓) Hive等
  • 数据处理、分析(Spark、Flink等)
  • 数据可视化
  • 数据挖掘、机器学习应用(Python、SparkMLlib等)

大数据时代存储的挑战(三高)

  • 高并发(同一时间很多人访问)
  • 高扩展(要求随时根据需求扩展存储)
  • 高效率(要求读写速度快)

NoSql非关系型数据库(存储方式各不相同),遵循CAP原则

  • 易扩展

  • 高性能

  • 高灵活

  • 高可用

    CAP: 一致性、可用性、分区容错性(但是不能同时满足3项,不同的nosql数据库都会满足其2而放弃其1)

    典型代表:MongoDB、Redis、HBase等,使用方式各不相同

  1. MongoDB:设计为分布式数据库,提供 高可用性和数据一致性,通常会在处理写操作时会有较高的延迟。
  2. Redis: 主要提供快速的键值读写能力,通常放弃数据一致性来保证高可用性
  3. HBase: 设计时更倾向于一致性,而牺牲高可用性,以保证数据的强一致和更新的最终一致性。

关系型数据库(以表格形式存储 数据),遵循ACID原则

ACID:是指数据的 原子性、一致性、隔离性、持久性

典型代表:MySql、Oracle、MSSqlServer、Sybase、Postpresql等

查询方式:SQL语句

关系型和非关系型的使用场景对比:

(1)关系型:

结构化数据存储:适合存储有明确定义关系的结构化数据,如订单、用户信息等。

ACID事务支持:提供强大的事务支持,确保数据需要进行多表关联、聚合操作的场景。

复杂查询:支持复杂的SQL查询,适用于需要进行多表关联、聚合操作的场景。

数据一致性:严格遵循ACID原则,保证数据的一致性和完整性。

(2)非关系型

大数据存储:适合存储半结构化或非结构化的大量数据,如日志、文档、图像等。

高可扩展性:基于分布式架构设计,具有良好的横向扩展性,能够轻松处理大规模数据。

灵活的数据模型:可以灵活地调整数据模型,适应不断变化的数据需求,无需事先定义表结构。

高性能读写:通常具有高性能的读写能力,能够满足实时数据处理和高并发访问的需求。

Nosql数据库分类

  1. 键值对数据库:Reids等
  2. 文档数据库:MongoDB等
  3. 列式数据库: HBase等
  4. 图形化数据库:Neo4j等
相关推荐
一 乐6 小时前
婚纱摄影网站|基于ssm + vue婚纱摄影网站系统(源码+数据库+文档)
前端·javascript·数据库·vue.js·spring boot·后端
1.14(java)7 小时前
SQL数据库操作:从CRUD到高级查询
数据库
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
智能相对论7 小时前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
Full Stack Developme8 小时前
数据库索引的原理及类型和应用场景
数据库
乌萨奇也要立志学C++8 小时前
【洛谷】递归初阶 三道经典递归算法题(汉诺塔 / 占卜 DIY/FBI 树)详解
数据结构·c++·算法
鱼跃鹰飞9 小时前
Leetcode1891:割绳子
数据结构·算法
焦耳热科技前沿9 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
IDC02_FEIYA9 小时前
SQL Server 2025数据库安装图文教程(附SQL Server2025数据库下载安装包)
数据库·windows
辞砚技术录9 小时前
MySQL面试题——联合索引
数据库·面试