卷积公式的几何学理解

1、Required Knowledge

1.1、概率密度函数

用于描述连续型随机变量在不同取值上的概率密度,记作 f ( x ) f(x) f(x)。

如随机变量 X X X的分布为正态分布,则其概率密度函数为:
f ( x ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 f(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=σ2π 1e−2σ2(x−μ)2

记作:
X ∼ N ( μ , σ 2 ) X \sim \mathcal{N}(\mu, \sigma^2) X∼N(μ,σ2)

1.2、联合概率密度

用于描述两个或多个连续型随机变量联合分布的概率密度。它表明这些随机变量在不同取值上的概率密度,是多个变量的联合概率分布的具体表现形式。

例如,记往坐标轴上打靶的位置为随机事件 A A A,该事件受到随机变量 X X X和 Y Y Y的影响,那么打靶的位置,即二维随机变量 ( X , Y ) (X, Y) (X,Y)的概率密度叫作 X X X和 Y Y Y的联合概率密度,记作 f ( x , y ) f(x,y) f(x,y)。

1.3、边缘分布概率密度

二维随机变量 ( X , Y ) (X, Y) (X,Y)有概率密度函数,而 X X X和 Y Y Y都是随机变量,各自也有各自的概率密度,分别记作 f X ( x ) f_X(x) fX(x) 和 f Y ( y ) f_Y(y) fY(y),有:
f X ( x ) = ∫ − ∞ ∞ f X , Y ( x , y )   d y f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy fX(x)=∫−∞∞fX,Y(x,y)dy
f Y ( y ) = ∫ − ∞ ∞ f X , Y ( x , y )   d x f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx fY(y)=∫−∞∞fX,Y(x,y)dx

1.4、独立性

A、B是两事件,如果满足
P ( A ∩ B ) = P ( A ) P ( B ) P(A∩B) = P(A)P(B) P(A∩B)=P(A)P(B)

等同于:
P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)

则称事件 A A A, B B B 相互独立。事件 A A A 和事件 B B B 同时发生的概率等于事件A发生的概率乘以事件B发生的概率,即:事件 A A A, B B B 是否发生不受另一事件的影响。

2、独立二维随机变量的联合概率密度

如二维随机变量 ( X , Y ) (X,Y) (X,Y)相互独立,则其联合概率密度 f ( x , y ) = f ( x ) f ( y ) f(x,y)=f(x)f(y) f(x,y)=f(x)f(y)。现有变量 X , Y X,Y X,Y均服从标准正态分布,其联合分布的概率密度为如图 A A A 所示的曲面。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import norm

# 假设 X 和 Y 都是独立的标准正态分布 N(0, 1)
mu_X, sigma_X = 0, 1
mu_Y, sigma_Y = 0, 1

# 定义网格范围和步长
x = np.linspace(-4, 4, 200)
normal_x = norm.pdf(x, mu_X, sigma_X)
y = np.linspace(-4, 4, 200)
normal_y = norm.pdf(y, mu_Y, sigma_Y)
x, y = np.meshgrid(x, y)


# 计算联合概率密度 f(x, y)
f_X = norm.pdf(x, mu_X, sigma_X)
f_Y = norm.pdf(y, mu_Y, sigma_Y)
f_XY = f_X * f_Y  # 由于独立性,联合密度等于单独密度的乘积


# 计算 Z = X + Y 的概率密度
z = x + y  # Z 的值
f_Z = norm.pdf(z, mu_X + mu_Y, np.sqrt(sigma_X**2 + sigma_Y**2))


# 创建一个三维图形对象
fig = plt.figure(figsize=(18, 6))

# 绘制联合分布的三维图
ax1 = fig.add_subplot(131, projection='3d')
surf = ax1.plot_surface(x, y, f_XY, cmap='hot', edgecolor='k', alpha=0.5)
ax1.set_title('Joint Probability Density of X and Y')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Density')
ax1.view_init(elev=30, azim=45)  # 调整视角

# 分别在x=4、y=4的平面上绘制原始的X、Y标准正态分布图
ax1.plot(x[0, :], np.full_like(x[0, :], 4), normal_x, color='green', lw=2, label='Normal X')
ax1.plot(np.full_like(y[:, 0], 4), y[:, 0], normal_y, color='black', lw=2, label='Normal Y')

# 添加图例
ax1.legend()


plt.tight_layout()
plt.show()

如图所示,绿色和黑色分别为 X X X 和 Y Y Y 的标准正态概率密度函数图,而曲面是联合概率密度函数图像。可以看出 ( 0 , 0 ) (0, 0) (0,0) 这个点的概率密度最大,符合标准正态分布的特性。

3、边缘分布的几何学解释

由联合分布的概率密度函数可知:
f X ( x ) = ∫ − ∞ ∞ f X , Y ( x , y )   d y f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy fX(x)=∫−∞∞fX,Y(x,y)dy
f Y ( y ) = ∫ − ∞ ∞ f X , Y ( x , y )   d x f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dx fY(y)=∫−∞∞fX,Y(x,y)dx

如何理解这个公式呢?

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import norm

# 假设 X 和 Y 都是独立的标准正态分布 N(0, 1)
mu_X, sigma_X = 0, 1
mu_Y, sigma_Y = 0, 1

# 定义网格范围和步长
x = np.linspace(-4, 4, 200)
normal_x = norm.pdf(x, mu_X, sigma_X)
y = np.linspace(-4, 4, 200)
normal_y = norm.pdf(y, mu_Y, sigma_Y)
x, y = np.meshgrid(x, y)


# 计算联合概率密度 f(x, y)
f_X = norm.pdf(x, mu_X, sigma_X)
f_Y = norm.pdf(y, mu_Y, sigma_Y)
f_XY = f_X * f_Y  # 由于独立性,联合密度等于单独密度的乘积


# 计算 Z = X + Y 的概率密度
z = x + y  # Z 的值
f_Z = norm.pdf(z, mu_X + mu_Y, np.sqrt(sigma_X**2 + sigma_Y**2))

## 创建一个三维图形对象
fig = plt.figure(figsize=(18, 6))

# 绘制联合分布的三维图
ax1 = fig.add_subplot(131, projection='3d')
surf = ax1.plot_surface(x, y, f_XY, cmap='hot', edgecolor='k', alpha=0.5)
ax1.set_title('Joint Probability Density of X and Y')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Density')
ax1.view_init(elev=30, azim=45)  # 调整视角

# 分别在x=4、y=4的平面上绘制原始的 X、Y 标准正态分布图
ax1.plot(x[0, :], np.full_like(x[0, :], 4), normal_x, color='green', lw=2, label='Normal X')
ax1.plot(np.full_like(y[:, 0], 4), y[:, 0], normal_y, color='black', lw=2, label='Normal Y')


# 计算边缘分布
# 计算边缘分布
marginal_x = np.sum(f_XY, axis=1) * (y[1, 0] - y[0, 0])  # 对 y 积分得到 x 的边缘分布
marginal_y = np.sum(f_XY, axis=0) * (x[0, 1] - x[0, 0])  # 对 x 积分得到 y 的边缘分布


# 分别在x=4.2、y=4.2的平面上绘制计算 X、Y 边缘分布图
ax1.plot(x[0, :], np.full_like(x[0, :], 4.2), marginal_x, color='red', lw=2, label='Marginal X')
ax1.plot(np.full_like(y[:, 0], 4.2), y[:, 0], marginal_y, color='blue', lw=2, label='Marginal Y')

# 添加图例
ax1.legend()

plt.tight_layout()
plt.show()

可以看到,原始的 X、Y 分布与基于联合分布函数计算得到的边缘分布是一样的。

以 X 为例,根据代码 marginal_x = np.sum(f_XY, axis=1) * (y[1, 0] - y[0, 0]) 可知,这就是对公式的代码化表达。

要想绘制 X X X 的边缘分布,就是对每个 X X X 的取值计算其概率密度。不妨令 X = 0 X=0 X=0 来理解这个公式。当 X = 0 X=0 X=0 时,联合概率密度如下图:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# 定义网格范围和步长
y = np.linspace(-4, 4, 200)  # y 的取值范围
x = np.linspace(-4, 4, 200)  # x 的取值范围
y, x = np.meshgrid(y, x)

# 假设 X 和 Y 都是独立的标准正态分布 N(0, 1)
mu_X, sigma_X = 0, 1
mu_Y, sigma_Y = 0, 1

# 计算联合概率密度 f(x, y)
f_X = norm.pdf(x, mu_X, sigma_X)
f_Y = norm.pdf(y, mu_Y, sigma_Y)
f_XY = f_X * f_Y  # 由于独立性,联合密度等于单独密度的乘积

# 仅保留 x = 0 的值
tolerance = 0.05  # 容差,用于确定接近0的范围
mask = np.abs(x) < tolerance
f_XY_filtered = np.where(mask, f_XY, 0)  # 将不满足条件的设为 NaN

# 创建一个三维图形对象
fig = plt.figure(figsize=(10, 8))

# 绘制 f(x,y) (仅当 x = 0 时)
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(x, y, f_XY_filtered, cmap='viridis', edgecolor='k', alpha=0.7)
ax.set_title('f(x,y) (with $x = 0$)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Density')

plt.tight_layout()
plt.show()

当 x = 0 x = 0 x=0 时, f ( x , y ) f(x,y) f(x,y) 为图中平面。
f X ( 0 ) = ∫ − ∞ ∞ f X , Y ( 0 , y )   d y f_X(0) = \int_{-\infty}^{\infty} f_{X,Y}(0, y) \, dy fX(0)=∫−∞∞fX,Y(0,y)dy

在 f ( x , y ) f(x,y) f(x,y) 在 y y y 轴上求积分,就是图中面的面积。就等于 X X X 的边缘分布函数(标准正态分布)在 x = 0 x=0 x=0 时的值。

4、两个随机变量的函数的分布

之前讲了单个随机变量的概率密度函数,两个随机变量的概率密度函数,那么两个随机变量组成的新的随机变量,其概率密度函数是什么?

设 ( X , Y ) (X,Y) (X,Y) 是二维连续型随机变量,它具有的概率密度 f ( x , y ) f(x,y) f(x,y),则 Z = X + Y Z=X+Y Z=X+Y 仍为连续型随机变量,其概率密度为:
f Z ( z ) = ∫ − ∞ ∞ f ( z − y , y )   d y f_Z(z) = \int_{-\infty}^{\infty} f(z-y,y)\, dy fZ(z)=∫−∞∞f(z−y,y)dy


f Z ( z ) = ∫ − ∞ ∞ f ( x , z − x )   d x f_Z(z) = \int_{-\infty}^{\infty} f(x,z-x)\, dx fZ(z)=∫−∞∞f(x,z−x)dx

若 X 和 Y 相互独立,X和Y的边缘概率密度分别为 f X ( x ) f_X(x) fX(x)和 f Y ( y ) f_Y(y) fY(y),上式变为:
f Z ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y )   d y f_Z(z) = \int_{-\infty}^{\infty} f_X(z-y) f_Y(y) \, dy fZ(z)=∫−∞∞fX(z−y)fY(y)dy
f Z ( z ) = ∫ − ∞ ∞ f X ( x ) f Y ( z − x )   d x f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) \, dx fZ(z)=∫−∞∞fX(x)fY(z−x)dx

这两个公式称为 f X f_X fX和 f Y f_Y fY的卷积公式,记为 f X ∗ f Y f_X*f_Y fX∗fY

4.1、随机变量 Z 的概率密度

因为正态分布的随机变量的线性组合仍为正态分布(证明可见概率论与数理统计),所以随机变量 Z Z Z 服从均值为 0,方差为 2 的正态分布。

随机变量 Z Z Z 的概率密度的三维和二维图像如图 B B B 和 C C C。

当 Z = 0 Z=0 Z=0 时,概率密度为 0.25 0.25 0.25 左右,对应图 B B B 中过原点,斜率为 0.5 的直线上对应的 X X X 和 Y Y Y 值。对应图 C C C 中 Z = 0 Z=0 Z=0 时的概率密度,同样约为 0.25 0.25 0.25。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import norm

# 定义网格范围和步长
x = np.linspace(-4, 4, 200)
y = np.linspace(-4, 4, 200)
x, y = np.meshgrid(x, y)

# 假设 X 和 Y 都是独立的标准正态分布 N(0, 1)
mu_X, sigma_X = 0, 1
mu_Y, sigma_Y = 0, 1

# 计算联合概率密度 f(x, y)
f_X = norm.pdf(x, mu_X, sigma_X)
f_Y = norm.pdf(y, mu_Y, sigma_Y)
f_XY = f_X * f_Y  # 由于独立性,联合密度等于单独密度的乘积

# 计算 Z = X + Y 的概率密度
z = x + y  # Z 的值
f_Z = norm.pdf(z, mu_X + mu_Y, np.sqrt(sigma_X**2 + sigma_Y**2))

# 计算边缘分布
marginal_x = np.sum(f_XY, axis=0) * (x[0, 1] - x[0, 0])
marginal_y = np.sum(f_XY, axis=1) * (y[1, 0] - y[0, 0])

# 创建一个三维图形对象
fig = plt.figure(figsize=(18, 6))

# 绘制联合分布的三维图
ax1 = fig.add_subplot(131, projection='3d')
ax1.plot_surface(x, y, f_XY, cmap='viridis', edgecolor='k', alpha=0.5)
ax1.set_title('Joint Probability Density of X and Y')
ax1.set_xlabel('X')
ax1.set_ylabel('Y')
ax1.set_zlabel('Density')
ax1.view_init(elev=30, azim=45)  # 调整视角

# 绘制边缘分布图
ax1.plot(x[0, :], np.full_like(x[0, :], 4), marginal_x, color='red', lw=2, label='Marginal X')
ax1.plot(np.full_like(y[:, 0], 4), y[:, 0], marginal_y, color='blue', lw=2, label='Marginal Y')

# 添加图例
ax1.legend()

# 绘制 Z = X + Y 的三维图
ax2 = fig.add_subplot(132, projection='3d')
ax2.plot_surface(x, y, f_Z, cmap='plasma', edgecolor='k', alpha=0.5)
ax2.set_title('Probability Density of Z = X + Y')
ax2.set_xlabel('X')
ax2.set_ylabel('Y')
ax2.set_zlabel('Density')
ax2.view_init(elev=45, azim=0)  # 调整视角

# 绘制 Z 的边缘概率密度图
z_values = np.linspace(-8, 8, 400)
f_Z_marginal = norm.pdf(z_values, mu_X + mu_Y, np.sqrt(sigma_X**2 + sigma_Y**2))

ax3 = fig.add_subplot(133)
ax3.plot(z_values, f_Z_marginal, color='blue', lw=2)
ax3.fill_between(z_values, f_Z_marginal, color='blue', alpha=0.3)
ax3.set_title('Marginal Probability Density of Z = X + Y')
ax3.set_xlabel('Z')
ax3.set_ylabel('Density')

plt.tight_layout()
plt.show()

4.2、卷积公式的几何学解释

如上边缘分布的几何学解释,我们已知联合分布函数 ( X , Y ) (X,Y) (X,Y),有 Z = X + Y Z=X+Y Z=X+Y,那么Z的概率密度函数 f Z ( z ) f_Z(z) fZ(z) 如下,也就是卷积公式。

要想知道并理解 Z Z Z 的概率密度公式。不妨令 Z = 0 Z=0 Z=0 来理解这个公式。当 Z = 0 Z=0 Z=0 时,联合概率密度如下图:

f Z ( z ) = ∫ − ∞ ∞ f X ( − y ) f Y ( y )   d y = ∫ − ∞ ∞ f X ( x ) f Y ( − x )   d x f_Z(z) = \int_{-\infty}^{\infty} f_X(-y) f_Y(y) \, dy = \int_{-\infty}^{\infty} f_X(x) f_Y( - x) \, dx fZ(z)=∫−∞∞fX(−y)fY(y)dy=∫−∞∞fX(x)fY(−x)dx

以 f Z ( z ) = ∫ − ∞ ∞ f X ( − y ) f Y ( y )   d y f_Z(z) = \int_{-\infty}^{\infty} f_X(-y) f_Y(y) \, dy fZ(z)=∫−∞∞fX(−y)fY(y)dy 为例, f Y ( y ) f_Y(y) fY(y)为标准正态分布, f X ( − y ) f_X(-y) fX(−y)也是标准正态分布,其中 x = − y x = -y x=−y。

即固定了 y y y, x x x也就为 − y -y −y, f X ( − y ) ∗ f Y ( y ) f_X(-y)*f_Y(y) fX(−y)∗fY(y) 的图像就是 f ( x , y ) f(x,y) f(x,y) 的一个切面,如下图所示。平面方程为 x + y = 0 x+y=0 x+y=0。

卷积公式就是对两个变量的其中一个做积分,积分结果就是 Z = 0 Z=0 Z=0 的概率密度。

对 f X ( − y ) f Y ( y ) f_X(-y)f_Y(y) fX(−y)fY(y) 函数在 x x x 或 y y y 方向上进行积分,可以理解为将该三维曲线投影到 x x x 或 y y y 平面上,然后计算投影曲线与坐标轴围成的面积。

由于 45 ° 45° 45° 的原因,使得该曲线在 x x x 或 y y y 平面的投影面积相同。

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.stats import norm

# 定义网格范围和步长
y = np.linspace(-4, 4, 200)
x = np.linspace(-4, 4, 200)
y, x = np.meshgrid(y, x)  # x 和 y 分别用于计算 f_X(-y) 和 f_Y(y)

# 假设 X 和 Y 都是独立的标准正态分布 N(0, 1)
mu_X, sigma_X = 0, 1
mu_Y, sigma_Y = 0, 1

# 计算 f_X(-y) 和 f_Y(y)
f_X = norm.pdf(x, mu_X, sigma_X)
f_Y = norm.pdf(y, mu_Y, sigma_Y)

# 计算 f_X(-y) * f_Y(y)
f_XY = f_X * f_Y

# 仅保留 x + y = 0 的值
tolerance = 0.05
mask = np.abs(x+y) < tolerance
f_XY_filtered = np.where(mask, f_XY, np.nan)
# f_XY_filtered = np.where(mask, f_XY, 0)

# 创建一个三维图形对象
fig = plt.figure(figsize=(10, 8))

# 绘制 f_X(-y) * f_Y(y) 的三维图(仅当 x + y = 0 时)
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(x, y, f_XY_filtered, cmap='viridis', edgecolor='k', alpha=0.7)
ax.set_title(r'$f_X(-y) \times f_Y(y)$ (with $x + y = 0$)')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Density')

plt.tight_layout()
plt.show()
相关推荐
通信.萌新22 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu27 分钟前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
weixin_3077791330 分钟前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
Channing Lewis1 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis1 小时前
如何在 Flask 中实现用户认证?
后端·python·flask
水银嘻嘻2 小时前
【Mac】Python相关知识经验
开发语言·python·macos
汤姆和佩琦2 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
我的运维人生2 小时前
Java并发编程深度解析:从理论到实践
java·开发语言·python·运维开发·技术共享
lljss20203 小时前
python创建一个httpServer网页上传文件到httpServer
开发语言·python
Makesths3 小时前
【python基础】用Python写一个2048小游戏
python