动态规划01背包问题

01背包问题


问题描述

现有四个物品,小偷的背包总容量为8,怎么可以偷到价值最多的物品(注意:每件物品最多只有一件)

如:

物品编号:1 2 3 4

物品重量:2 3 4 5

物品价值:3 4 5 8

分析

我们记f(k,w):当背包容量为w,现在有k件物品可以偷所能偷到的最大价值那么该问题就是f(4,8)我们根据下图来看一下

很明显这道题的状态转移方程为 f(k-1,w),wk>w(太重放不下),max{f(k-1,w),f(k-1,w-wk)+vk},wk<=w

vk代表的是价值

代码如下:

c 复制代码
#include<bits/stdc++.h>
using namespace std;
int f[5][9]={0};// 定义存储动态规划表的数组,f[i][j]表示前i个物品在容量为j的背包中的最大价值
int w[5]={0,2,3,4,5};// 物品重量数组(0号物品不使用,物品从1开始
int v[5]={0,3,4,5,8};// 物品价值数组(0号物品不使用,物品从1开始)
signed main()
{
	int i,j;
	memset(f,0,sizeof(f));
	for(int i=1;i<=4;i++)// 遍历所有物品
	{
		for(int j=1;j<=8;j++)// 遍历所有背包容量
		{
			if(w[i]>j)// 如果当前物品的重量大于背包容量
			{
				f[i][j]=f[i-1][j];// 当前物品不能放入背包,继承上一个状态的值
			}
			else
			{
				// 当前物品可以放入背包,取不放入和放入背包两种情况的最大值
				f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);
			}
		}
	}
	for(int i=0;i<=4;i++)
	{
        for(int j=0;j<=8;j++)
		{
			// 输出每个状态的最大价值
			cout << "f[" << i << "][" << j << "]=" << f[i][j] << endl;
		} 
	}
	return 0;	
} 
相关推荐
!停1 分钟前
数据结构时间复杂度
c语言·开发语言·算法
AI科技星2 分钟前
电磁光速几何耦合常数 Z‘ 的几何起源、第一性原理推导与多维度验证
人工智能·线性代数·算法·矩阵·数据挖掘
王老师青少年编程2 分钟前
2025信奥赛C++提高组csp-s复赛真题及题解:社团招新
c++·真题·csp·信奥赛·csp-s·提高组·复赛
每天要多喝水2 分钟前
贪心算法专题Day19
算法·贪心算法
充值修改昵称2 分钟前
数据结构基础:图论基础全面解析
数据结构·python·图论
Sarvartha5 分钟前
图论基础与遍历算法(BFS+DFS)
算法·深度优先
努力学算法的蒟蒻6 分钟前
day70(1.29)——leetcode面试经典150
算法·leetcode·面试
橘子师兄6 分钟前
C++AI大模型接入SDK—Ollama本地接入Deepseek
c++·人工智能·后端
冰水不凉9 分钟前
cartographer源码阅读三-sensor_bridge
算法
程序猿编码9 分钟前
深入浅出Linux内核级防火墙:IP/端口黑白名单的高性能实现
linux·c语言·c++·tcp/ip·内核