动态规划01背包问题

01背包问题


问题描述

现有四个物品,小偷的背包总容量为8,怎么可以偷到价值最多的物品(注意:每件物品最多只有一件)

如:

物品编号:1 2 3 4

物品重量:2 3 4 5

物品价值:3 4 5 8

分析

我们记f(k,w):当背包容量为w,现在有k件物品可以偷所能偷到的最大价值那么该问题就是f(4,8)我们根据下图来看一下

很明显这道题的状态转移方程为 f(k-1,w),wk>w(太重放不下),max{f(k-1,w),f(k-1,w-wk)+vk},wk<=w

vk代表的是价值

代码如下:

c 复制代码
#include<bits/stdc++.h>
using namespace std;
int f[5][9]={0};// 定义存储动态规划表的数组,f[i][j]表示前i个物品在容量为j的背包中的最大价值
int w[5]={0,2,3,4,5};// 物品重量数组(0号物品不使用,物品从1开始
int v[5]={0,3,4,5,8};// 物品价值数组(0号物品不使用,物品从1开始)
signed main()
{
	int i,j;
	memset(f,0,sizeof(f));
	for(int i=1;i<=4;i++)// 遍历所有物品
	{
		for(int j=1;j<=8;j++)// 遍历所有背包容量
		{
			if(w[i]>j)// 如果当前物品的重量大于背包容量
			{
				f[i][j]=f[i-1][j];// 当前物品不能放入背包,继承上一个状态的值
			}
			else
			{
				// 当前物品可以放入背包,取不放入和放入背包两种情况的最大值
				f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);
			}
		}
	}
	for(int i=0;i<=4;i++)
	{
        for(int j=0;j<=8;j++)
		{
			// 输出每个状态的最大价值
			cout << "f[" << i << "][" << j << "]=" << f[i][j] << endl;
		} 
	}
	return 0;	
} 
相关推荐
saltymilk3 小时前
C++ 模板参数推导问题小记(模板类的模板构造函数)
c++·模板元编程
感哥4 小时前
C++ lambda 匿名函数
c++
沐怡旸9 小时前
【底层机制】std::unique_ptr 解决的痛点?是什么?如何实现?怎么正确使用?
c++·面试
感哥10 小时前
C++ 内存管理
c++
聚客AI10 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v13 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工15 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农16 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了16 小时前
AcWing学习——双指针算法
c++·算法
感哥17 小时前
C++ 指针和引用
c++