机器学习(西瓜书)第 9 章 聚类

9.1 聚类任务和距离计算

在"无监督学习"中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础.此类学习任务中研究最多、应用最广的是"聚类"(clustering).

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个"簇"(cluster).通过这样的划分,每个簇可能对应于一些潜在的概念(类别),如 "浅色瓜" "深色瓜","有籽瓜" "无籽瓜",甚至"本地瓜" "外地瓜"等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名.

聚类既能作为一个单独过程,用于找寻数据内在的分布结构,也可作为分类等其他学习任务的前驱过程.例如,在一些商业应用中需对新用户的类型进行判别,但定义"用户类型"对商家来说却可能不太容易,此时往往可先对用户数据进行聚类,根据聚类结果将每个簇定义为一个类,然后再基于这些类训练分类模型,用于判别新用户的类型.

基于不同的学习策略,人们设计出多种类型的聚类算法.本章后半部分将对不同类型的代表性算法进行介绍,但在此之前,我们先讨论聚类算法涉及的两个基本问题一一性能度量和距离计算.

对于 连续的 或者 离散且有序的:

对于离散且无序的:

9.2 k-means原型聚类


kmeans算法不太适应的情况:比如一个环形的数据集,有两个簇,就是外面一个环都属于一个类别,里面这个环属于另一个类别,而计算距离的公式如果使用欧式距离,里面这个簇的中心也是外面这个簇的中心,也就是导致两个中心重合,无法区分两个类别样本

因此有了以下改进:

9.3 DBSCAN密度聚类


9.4 AGNES层次聚类

前面两种聚类都和 核心对象 有关,样本才能知道自己属于哪个类,那么其实它们就相当于是一种扁平的结构

如果想在聚类的过程中,去产生这种层次结构的话,就不可以用kmeans和dbscan,需要一种层次聚类的这种算法

层次聚类试图将数据划分成不同的层次,所以聚类的结果是有这种明显的一个树状结构的


相关推荐
孙同学要努力28 分钟前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee202128 分钟前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧32 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab
丕羽2 小时前
【Pytorch】基本语法
人工智能·pytorch·python
ctrey_2 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
SongYuLong的博客2 小时前
Air780E基于LuatOS编程开发
人工智能
Jina AI2 小时前
RAG 系统的分块难题:小型语言模型如何找到最佳断点?
人工智能·语言模型·自然语言处理
-派神-2 小时前
大语言模型(LLM)量化基础知识(一)
人工智能·语言模型·自然语言处理
johnny_hhh2 小时前
AI大模型重塑软件开发流程:定义、应用场景、优势、挑战及未来展望
人工智能
Elastic 中国社区官方博客2 小时前
释放专利力量:Patently 如何利用向量搜索和 NLP 简化协作
大数据·数据库·人工智能·elasticsearch·搜索引擎·自然语言处理