机器学习(西瓜书)第 9 章 聚类

9.1 聚类任务和距离计算

在"无监督学习"中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础.此类学习任务中研究最多、应用最广的是"聚类"(clustering).

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集称为一个"簇"(cluster).通过这样的划分,每个簇可能对应于一些潜在的概念(类别),如 "浅色瓜" "深色瓜","有籽瓜" "无籽瓜",甚至"本地瓜" "外地瓜"等;需说明的是,这些概念对聚类算法而言事先是未知的,聚类过程仅能自动形成簇结构,簇所对应的概念语义需由使用者来把握和命名.

聚类既能作为一个单独过程,用于找寻数据内在的分布结构,也可作为分类等其他学习任务的前驱过程.例如,在一些商业应用中需对新用户的类型进行判别,但定义"用户类型"对商家来说却可能不太容易,此时往往可先对用户数据进行聚类,根据聚类结果将每个簇定义为一个类,然后再基于这些类训练分类模型,用于判别新用户的类型.

基于不同的学习策略,人们设计出多种类型的聚类算法.本章后半部分将对不同类型的代表性算法进行介绍,但在此之前,我们先讨论聚类算法涉及的两个基本问题一一性能度量和距离计算.

对于 连续的 或者 离散且有序的:

对于离散且无序的:

9.2 k-means原型聚类


kmeans算法不太适应的情况:比如一个环形的数据集,有两个簇,就是外面一个环都属于一个类别,里面这个环属于另一个类别,而计算距离的公式如果使用欧式距离,里面这个簇的中心也是外面这个簇的中心,也就是导致两个中心重合,无法区分两个类别样本

因此有了以下改进:

9.3 DBSCAN密度聚类


9.4 AGNES层次聚类

前面两种聚类都和 核心对象 有关,样本才能知道自己属于哪个类,那么其实它们就相当于是一种扁平的结构

如果想在聚类的过程中,去产生这种层次结构的话,就不可以用kmeans和dbscan,需要一种层次聚类的这种算法

层次聚类试图将数据划分成不同的层次,所以聚类的结果是有这种明显的一个树状结构的


相关推荐
γ..几秒前
【传知代码】VRT_ 关于视频修复的模型
人工智能·深度学习·神经网络·学习·机器学习·音视频
天蓝蓝235288 分钟前
Keras构建卷积神经网络
人工智能·cnn·keras
池央21 分钟前
解析生成对抗网络(GAN):原理与应用
人工智能·机器学习·gan
weixin_4870584129 分钟前
【在 PyTorch 中使用 tqdm 显示训练进度条,并解决常见错误TypeError: ‘module‘ object is not callable】
人工智能
practical_sharp30 分钟前
基于Pytorch的CIFAR100数据集上从ResNet50到VGG16的知识蒸馏实验记录
人工智能·pytorch·python
leijiwen30 分钟前
构建一个去中心化的零售生态参与者的商业模型
人工智能·去中心化·零售
泰勒朗斯43 分钟前
NVIDIA /CUDA 里面的clock rate详细介绍
人工智能
Munger hunger1 小时前
trtllm 部署新体验
人工智能
Donvink1 小时前
YOLO系列论文综述(从YOLOv1到YOLOv11)【第2篇:YOLO系列论文、代码和主要优缺点汇总】
人工智能·深度学习·yolo
阿里云大数据AI技术2 小时前
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
人工智能·阿里云·云计算·itu