【pytorch】keepdim参数解析

keepdim 是 PyTorch 中的一个参数,常用于各种归约操作(如求和、求均值、求最大值等)。当我们对张量进行归约时,通常会减少该维度的大小,但有时我们希望保持归约后的维度不变,这时就会用到 keepdim=True

举个例子

假设我们有一个 2x3 的张量 x

python 复制代码
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制代码
tensor([[1, 2, 3],
        [4, 5, 6]])
1. 不使用 keepdim

我们对张量的某个维度进行求均值操作,例如对维度 1(列)求均值:

python 复制代码
mean_without_keepdim = x.mean(dim=1)
print(mean_without_keepdim)

输出:

复制代码
tensor([2., 5.])

在这种情况下,原本的 2x3 的张量被压缩成了 1D 的张量 [2., 5.],原来的维度 1(列)被"消除"了。

2. 使用 keepdim=True
python 复制代码
mean_with_keepdim = x.mean(dim=1, keepdim=True)
print(mean_with_keepdim)

输出:

复制代码
tensor([[2.],
        [5.]])

在这种情况下,虽然我们在维度 1 上进行了均值操作,但 keepdim=True 保持了维度结构,所以结果仍然是 2x1 的张量,而不是被压缩成 1D 的张量。即原来的维度 1 被保留,只是大小从 3 变成了 1。

总结

  • keepdim=False(默认值):归约操作后,所归约的维度会被移除,张量的维度会减少。
  • keepdim=True:归约操作后,所归约的维度会被保留,张量的维度不变,但该维度的大小变为 1。

这是在处理张量形状时非常有用的功能,尤其是在需要保持张量形状一致性的场景下(比如在某些层归一化操作或在神经网络中)。

相关推荐
virtaitech5 分钟前
如何评价趋动科技推出永久免费的OrionX社区版?
人工智能·科技·ai·免费·gpu·池化技术
仓鼠出海9 分钟前
多agent vs 单agent
人工智能·ai·语言模型
墨染天姬19 分钟前
【AI】自媒体时代-零帧起号
人工智能·媒体
A尘埃20 分钟前
数值特征标准化StandardScaler和类别不平衡SMOTE
人工智能·深度学习·机器学习
人工智能AI技术20 分钟前
【Agent从入门到实践】44 监控与日志:添加监控指标、日志记录,方便问题排查
人工智能·python
来两个炸鸡腿25 分钟前
【Datawhale组队学习202601】Base-NLP task06 大模型训练与量化
人工智能·学习·自然语言处理
bylander27 分钟前
【AI学习】TM Forum自智网络L4级标准体系
人工智能·学习·智能体·自动驾驶网络
世优科技虚拟人28 分钟前
从AI数字人讲解到MR数字人导览,数字人厂商革新文旅新服务
人工智能·大模型·数字人·智能交互
2301_8174973333 分钟前
自然语言处理(NLP)入门:使用NLTK和Spacy
jvm·数据库·python
张小凡vip36 分钟前
数据挖掘(七) ---Jupyter Notebook快捷方式和魔术命令(特殊命令)
人工智能·jupyter·数据挖掘