【pytorch】keepdim参数解析

keepdim 是 PyTorch 中的一个参数,常用于各种归约操作(如求和、求均值、求最大值等)。当我们对张量进行归约时,通常会减少该维度的大小,但有时我们希望保持归约后的维度不变,这时就会用到 keepdim=True

举个例子

假设我们有一个 2x3 的张量 x

python 复制代码
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制代码
tensor([[1, 2, 3],
        [4, 5, 6]])
1. 不使用 keepdim

我们对张量的某个维度进行求均值操作,例如对维度 1(列)求均值:

python 复制代码
mean_without_keepdim = x.mean(dim=1)
print(mean_without_keepdim)

输出:

复制代码
tensor([2., 5.])

在这种情况下,原本的 2x3 的张量被压缩成了 1D 的张量 [2., 5.],原来的维度 1(列)被"消除"了。

2. 使用 keepdim=True
python 复制代码
mean_with_keepdim = x.mean(dim=1, keepdim=True)
print(mean_with_keepdim)

输出:

复制代码
tensor([[2.],
        [5.]])

在这种情况下,虽然我们在维度 1 上进行了均值操作,但 keepdim=True 保持了维度结构,所以结果仍然是 2x1 的张量,而不是被压缩成 1D 的张量。即原来的维度 1 被保留,只是大小从 3 变成了 1。

总结

  • keepdim=False(默认值):归约操作后,所归约的维度会被移除,张量的维度会减少。
  • keepdim=True:归约操作后,所归约的维度会被保留,张量的维度不变,但该维度的大小变为 1。

这是在处理张量形状时非常有用的功能,尤其是在需要保持张量形状一致性的场景下(比如在某些层归一化操作或在神经网络中)。

相关推荐
落雨盛夏6 小时前
深度学习|李哥考研4图片分类比较详细说明
人工智能·深度学习·分类
臭东西的学习笔记10 小时前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
Rabbit_QL10 小时前
【水印添加工具】从零设计一个工程级 Python 图片水印工具:WaterMask 架构与实现
开发语言·python
大王小生10 小时前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_4626052210 小时前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang88811 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新11 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录11 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划11 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm52011 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi