【pytorch】keepdim参数解析

keepdim 是 PyTorch 中的一个参数,常用于各种归约操作(如求和、求均值、求最大值等)。当我们对张量进行归约时,通常会减少该维度的大小,但有时我们希望保持归约后的维度不变,这时就会用到 keepdim=True

举个例子

假设我们有一个 2x3 的张量 x

python 复制代码
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制代码
tensor([[1, 2, 3],
        [4, 5, 6]])
1. 不使用 keepdim

我们对张量的某个维度进行求均值操作,例如对维度 1(列)求均值:

python 复制代码
mean_without_keepdim = x.mean(dim=1)
print(mean_without_keepdim)

输出:

复制代码
tensor([2., 5.])

在这种情况下,原本的 2x3 的张量被压缩成了 1D 的张量 [2., 5.],原来的维度 1(列)被"消除"了。

2. 使用 keepdim=True
python 复制代码
mean_with_keepdim = x.mean(dim=1, keepdim=True)
print(mean_with_keepdim)

输出:

复制代码
tensor([[2.],
        [5.]])

在这种情况下,虽然我们在维度 1 上进行了均值操作,但 keepdim=True 保持了维度结构,所以结果仍然是 2x1 的张量,而不是被压缩成 1D 的张量。即原来的维度 1 被保留,只是大小从 3 变成了 1。

总结

  • keepdim=False(默认值):归约操作后,所归约的维度会被移除,张量的维度会减少。
  • keepdim=True:归约操作后,所归约的维度会被保留,张量的维度不变,但该维度的大小变为 1。

这是在处理张量形状时非常有用的功能,尤其是在需要保持张量形状一致性的场景下(比如在某些层归一化操作或在神经网络中)。

相关推荐
龘龍龙5 分钟前
Python基础(九)
android·开发语言·python
极客小云7 分钟前
【突发公共事件智能分析新范式:基于PERSIA框架与大模型的知识图谱构建实践】
大数据·人工智能·知识图谱
大学生毕业题目24 分钟前
毕业项目推荐:91-基于yolov8/yolov5/yolo11的井盖破损检测识别(Python+卷积神经网络)
python·yolo·目标检测·cnn·pyqt·井盖破损
Fuly102425 分钟前
如何评估LLM和Agent质量
人工智能
weisian15127 分钟前
入门篇--知名企业-12-Stability AI:不止于“艺术”,这是一场开源AI的全面起义
人工智能·开源·stablility ai
五月君_1 小时前
Nuxt UI v4.3 发布:原生 AI 富文本编辑器来了,Vue 生态又添一员猛将!
前端·javascript·vue.js·人工智能·ui
wjykp1 小时前
109~111集成学习
人工智能·机器学习·集成学习
XLYcmy1 小时前
TarGuessIRefined密码生成器详细分析
开发语言·数据结构·python·网络安全·数据安全·源代码·口令安全
小程故事多_801 小时前
Spring AI 赋能 Java,Spring Boot 快速落地 LLM 的企业级解决方案
java·人工智能·spring·架构·aigc
xcLeigh1 小时前
AI的提示词专栏:写作助手 Prompt,从提纲到完整文章
人工智能·ai·prompt·提示词