【pytorch】keepdim参数解析

keepdim 是 PyTorch 中的一个参数,常用于各种归约操作(如求和、求均值、求最大值等)。当我们对张量进行归约时,通常会减少该维度的大小,但有时我们希望保持归约后的维度不变,这时就会用到 keepdim=True

举个例子

假设我们有一个 2x3 的张量 x

python 复制代码
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制代码
tensor([[1, 2, 3],
        [4, 5, 6]])
1. 不使用 keepdim

我们对张量的某个维度进行求均值操作,例如对维度 1(列)求均值:

python 复制代码
mean_without_keepdim = x.mean(dim=1)
print(mean_without_keepdim)

输出:

复制代码
tensor([2., 5.])

在这种情况下,原本的 2x3 的张量被压缩成了 1D 的张量 [2., 5.],原来的维度 1(列)被"消除"了。

2. 使用 keepdim=True
python 复制代码
mean_with_keepdim = x.mean(dim=1, keepdim=True)
print(mean_with_keepdim)

输出:

复制代码
tensor([[2.],
        [5.]])

在这种情况下,虽然我们在维度 1 上进行了均值操作,但 keepdim=True 保持了维度结构,所以结果仍然是 2x1 的张量,而不是被压缩成 1D 的张量。即原来的维度 1 被保留,只是大小从 3 变成了 1。

总结

  • keepdim=False(默认值):归约操作后,所归约的维度会被移除,张量的维度会减少。
  • keepdim=True:归约操作后,所归约的维度会被保留,张量的维度不变,但该维度的大小变为 1。

这是在处理张量形状时非常有用的功能,尤其是在需要保持张量形状一致性的场景下(比如在某些层归一化操作或在神经网络中)。

相关推荐
算家计算几秒前
国产模型新王登基!刚刚,Kimi K2 Thinking发布,多项能力超越GPT-5
人工智能·开源·资讯
ZhengEnCi1 分钟前
P3B-90%初学者参数传错位置?合格程序员都这样选择参数类型
python
程序员晚枫10 分钟前
Python处理Excel的5个“神仙库”,办公效率直接翻倍!
python·excel
推理幻觉16 分钟前
IDE/编码代理架构与 Cursor 相关研究(汇总)
ide·人工智能·架构·agent
YangYang9YangYan27 分钟前
中专服装设计专业职业发展指南
大数据·人工智能·数据分析
新智元37 分钟前
AI 科学家登场!12 小时抵人类科学家半年工作量,已有 7 项大成果
人工智能·openai
新智元37 分钟前
PyTorch 之父闪电离职,AI 半壁江山集体致敬!
人工智能·openai
NON-JUDGMENTAL1 小时前
指令微调(Instruction Tuning)
人工智能·深度学习·机器学习
Funny_AI_LAB1 小时前
深度解析Andrej Karpathy访谈:关于AI智能体、AGI、强化学习与大模型的十年远见
人工智能·计算机视觉·ai·agi
小兜全糖(xdqt)1 小时前
python ppt转pdf以及图片提取
python·pdf·powerpoint