【pytorch】keepdim参数解析

keepdim 是 PyTorch 中的一个参数,常用于各种归约操作(如求和、求均值、求最大值等)。当我们对张量进行归约时,通常会减少该维度的大小,但有时我们希望保持归约后的维度不变,这时就会用到 keepdim=True

举个例子

假设我们有一个 2x3 的张量 x

python 复制代码
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制代码
tensor([[1, 2, 3],
        [4, 5, 6]])
1. 不使用 keepdim

我们对张量的某个维度进行求均值操作,例如对维度 1(列)求均值:

python 复制代码
mean_without_keepdim = x.mean(dim=1)
print(mean_without_keepdim)

输出:

复制代码
tensor([2., 5.])

在这种情况下,原本的 2x3 的张量被压缩成了 1D 的张量 [2., 5.],原来的维度 1(列)被"消除"了。

2. 使用 keepdim=True
python 复制代码
mean_with_keepdim = x.mean(dim=1, keepdim=True)
print(mean_with_keepdim)

输出:

复制代码
tensor([[2.],
        [5.]])

在这种情况下,虽然我们在维度 1 上进行了均值操作,但 keepdim=True 保持了维度结构,所以结果仍然是 2x1 的张量,而不是被压缩成 1D 的张量。即原来的维度 1 被保留,只是大小从 3 变成了 1。

总结

  • keepdim=False(默认值):归约操作后,所归约的维度会被移除,张量的维度会减少。
  • keepdim=True:归约操作后,所归约的维度会被保留,张量的维度不变,但该维度的大小变为 1。

这是在处理张量形状时非常有用的功能,尤其是在需要保持张量形状一致性的场景下(比如在某些层归一化操作或在神经网络中)。

相关推荐
知行合一。。。22 分钟前
Python--03--函数入门
android·数据库·python
竹君子24 分钟前
AIDC知识库(3)英伟达Rubin 架构对未来AIDC方案的影响初探
人工智能
棒棒的皮皮31 分钟前
【深度学习】YOLO模型速度优化全攻略(模型 / 推理 / 硬件三层维度)
人工智能·深度学习·yolo·计算机视觉
线束线缆组件品替网33 分钟前
Amphenol RF 同轴线缆:高频 RF 系统设计中 VSWR 与损耗控制实践
网络·人工智能·电脑·硬件工程·材料工程
-曾牛38 分钟前
Yak语言核心基础:语句、变量与表达式详解
数据库·python·网络安全·golang·渗透测试·安全开发·yak
土星云SaturnCloud1 小时前
液冷技术的未来:相变冷却、喷淋冷却等前沿技术探索
服务器·人工智能·ai
悟道心1 小时前
7. 自然语言处理NLP - Bert
人工智能·自然语言处理·bert
数据大魔方1 小时前
【期货量化实战】跨期套利策略:价差交易完整指南(TqSdk源码详解)
数据库·python·算法·github·程序员创富
头发还在的女程序员1 小时前
小剧场短剧影视小程序源码分享,搭建自己的短剧小程序
人工智能·小程序·短剧·影视·微剧
l1t1 小时前
NineData第三届数据库编程大赛:用一条 SQL 解数独问题我的参赛程序
数据库·人工智能·sql·算法·postgresql·oracle·数独