【pytorch】keepdim参数解析

keepdim 是 PyTorch 中的一个参数,常用于各种归约操作(如求和、求均值、求最大值等)。当我们对张量进行归约时,通常会减少该维度的大小,但有时我们希望保持归约后的维度不变,这时就会用到 keepdim=True

举个例子

假设我们有一个 2x3 的张量 x

python 复制代码
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

复制代码
tensor([[1, 2, 3],
        [4, 5, 6]])
1. 不使用 keepdim

我们对张量的某个维度进行求均值操作,例如对维度 1(列)求均值:

python 复制代码
mean_without_keepdim = x.mean(dim=1)
print(mean_without_keepdim)

输出:

复制代码
tensor([2., 5.])

在这种情况下,原本的 2x3 的张量被压缩成了 1D 的张量 [2., 5.],原来的维度 1(列)被"消除"了。

2. 使用 keepdim=True
python 复制代码
mean_with_keepdim = x.mean(dim=1, keepdim=True)
print(mean_with_keepdim)

输出:

复制代码
tensor([[2.],
        [5.]])

在这种情况下,虽然我们在维度 1 上进行了均值操作,但 keepdim=True 保持了维度结构,所以结果仍然是 2x1 的张量,而不是被压缩成 1D 的张量。即原来的维度 1 被保留,只是大小从 3 变成了 1。

总结

  • keepdim=False(默认值):归约操作后,所归约的维度会被移除,张量的维度会减少。
  • keepdim=True:归约操作后,所归约的维度会被保留,张量的维度不变,但该维度的大小变为 1。

这是在处理张量形状时非常有用的功能,尤其是在需要保持张量形状一致性的场景下(比如在某些层归一化操作或在神经网络中)。

相关推荐
Dontla1 分钟前
Mock Interview模拟面试,20260108,MNC第二面技术面,AI Engineer
人工智能·面试·职场和发展
小咖自动剪辑1 分钟前
免费超强图片压缩工具:批量操作 + 高效传输不失真
人工智能·音视频·语音识别·实时音视频·视频编解码
纠结哥_Shrek2 分钟前
不均衡分布原则进行选品
大数据·人工智能
北京耐用通信4 分钟前
耐达讯自动化“通关文牒”:Canopen转Profibus网关,贴片机的“协议通关秘籍”
人工智能·科技·网络协议·自动化·信息与通信
_codemonster6 分钟前
计算机视觉入门到实战系列(六)边缘检测sobel算子
人工智能·计算机视觉
杀生丸学AI7 分钟前
【平面重建】3D高斯平面:混合2D/3D光场重建(NeurIPS2025)
人工智能·平面·3d·大模型·aigc·高斯泼溅·空间智能
小oo呆7 分钟前
【学习心得】Python的Pydantic(简介)
前端·javascript·python
九河_7 分钟前
四元数 --> 双四元数
人工智能·四元数·双四元数
岚天start8 分钟前
【日志监控方案】Python脚本获取关键字日志信息并推送钉钉告警
python·钉钉·日志监控
Gofarlic_oms19 分钟前
从手动统计到自动化:企业AutoCAD许可管理进化史
大数据·运维·网络·人工智能·微服务·自动化