基于Spark 的零售交易数据挖掘分析与可视化

基于Spark 的零售交易数据挖掘分析与可视化

本文将带你通过 PySpark 进行电商数据的分析处理,并将结果保存为 JSON 文件,供前端展示。我们将从数据的读取、处理、分析到结果保存和网页展示,覆盖完整的数据流。项目结构如下:

1、Spark 分析数据

2、生成 JSON 文件

3、使用 Bottle 框架搭建简单 Web 服务器

项目简介

我们使用了 PySpark 来处理一个电商数据集,数据存储在 HDFS 上。通过 SQL 和 RDD 操作实现了多个业务需求分析,并最终将结果保存为 JSON 文件,用于前端展示。后端 Web 服务采用 Bottle 框架,提供静态文件服务和页面展示。

数据集介绍

数据集包括了以下字段:

InvoiceNo: 订单号

StockCode: 商品编码

Description: 商品描述

Quantity: 数量

InvoiceDate: 订单日期

UnitPrice: 商品单价

CustomerID: 客户编号

Country: 国家

1. 数据读取

首先,我们从 HDFS 中读取 CSV 文件作为 Spark 的 DataFrame,并通过 createOrReplaceTempView 创建 SQL 查询视图。代码如下:

python 复制代码
# 从HDFS中读取数据集为DataFrame
df = spark.read.format('com.databricks.spark.csv').options(header='true', inferschema='true').load('../data/E_Commerce_Data.csv')
df.createOrReplaceTempView("data")

2. 分析任务

通过 SQL 查询和 RDD 操作,项目实现了以下 10 项数据分析任务:

  1. 客户数最多的 10 个国家
    通过 SQL 查询,统计每个国家的客户数,并选出客户数最多的 10 个国家:
python 复制代码
def countryCustomer():
    countryCustomerDF = spark.sql("SELECT Country,COUNT(DISTINCT CustomerID) AS countOfCustomer FROM data GROUP BY Country ORDER BY countOfCustomer DESC LIMIT 10")
    return countryCustomerDF.collect()
  1. 销量最高的 10 个国家
    统计每个国家的商品销量,并选出销量最高的 10 个国家:
python 复制代码
def countryQuantity():
    countryQuantityDF = spark.sql("SELECT Country,SUM(Quantity) AS sumOfQuantity FROM data GROUP BY Country ORDER BY sumOfQuantity DESC LIMIT 10")
    return countryQuantityDF.collect()
  1. 各国总销售额分布
    计算每个国家的销售额,结果按销售额大小进行排序:
python 复制代码
def countrySumOfPrice():
    countrySumOfPriceDF = spark.sql("SELECT Country,SUM(UnitPrice*Quantity) AS sumOfPrice FROM data GROUP BY Country")
    return countrySumOfPriceDF.collect()
  1. 销量最高的 10 个商品
    统计商品的销量,按销量大小选出销量最高的 10 个商品:
python 复制代码
def stockQuantity():
    stockQuantityDF = spark.sql("SELECT StockCode,SUM(Quantity) AS sumOfQuantity FROM data GROUP BY StockCode ORDER BY sumOfQuantity DESC LIMIT 10")
    return stockQuantityDF.collect()
  1. 商品描述的热门关键词 Top 300
    通过对商品描述字段进行分词和词频统计,得到最热门的 300 个关键词:
python 复制代码
def wordCount():
    wordCount = spark.sql("SELECT LOWER(Description) as description from data").rdd.filter(lambda line:line['description'] is not None).flatMap(lambda line:line['description'].split(" ")).map(lambda word:(word,1)).reduceByKey(lambda a,b:a+b).repartition(1).sortBy(lambda x:x[1],False)
    wordCountSchema = StructType([StructField("word", StringType(), True),StructField("count", IntegerType(), True)])
    wordCountDF = spark.createDataFrame(wordCount, wordCountSchema)
    return wordCountDF.take(300)
  1. 退货订单数最多的 10 个国家
    统计退货订单数量最多的 10 个国家,退货订单的 InvoiceNo 以 'C' 开头:
python 复制代码
def countryReturnInvoice():
    countryReturnInvoiceDF = spark.sql("SELECT Country,COUNT(DISTINCT InvoiceNo) AS countOfReturnInvoice FROM data WHERE InvoiceNo LIKE 'C%' GROUP BY Country ORDER BY countOfReturnInvoice DESC LIMIT 10")
    return countryReturnInvoiceDF.collect()
  1. 月销售额随时间的变化趋势
    通过提取 InvoiceDate 中的年份和月份,计算每月的销售额:
python 复制代码
def tradePrice():
    result3 = formatData()
    result4 = result3.map(lambda line:(line[0]+"-"+line[1],line[3]*line[4]))
    result5 = result4.reduceByKey(lambda a,b:a+b).sortByKey()
    schema = StructType([StructField("date", StringType(), True),StructField("tradePrice", DoubleType(), True)])
    tradePriceDF = spark.createDataFrame(result5, schema)
    return tradePriceDF.collect()
  1. 日销量随时间的变化趋势
    计算每天的销售量变化趋势,提取 InvoiceDate 的年、月、日,并进行汇总:
python 复制代码
def saleQuantity():
    result3 = formatData()
    result4 = result3.map(lambda line:(line[0]+"-"+line[1]+"-"+line[2],line[3]))
    result5 = result4.reduceByKey(lambda a,b:a+b).sortByKey()
    schema = StructType([StructField("date", StringType(), True),StructField("saleQuantity", IntegerType(), True)])
    saleQuantityDF = spark.createDataFrame(result5, schema)
    return saleQuantityDF.collect()
  1. 各国购买订单量与退货订单量的关系
    通过联表查询,展示每个国家的购买订单量与退货订单量的关系:
python 复制代码
def buyReturn():
    returnDF = spark.sql("SELECT Country AS Country,COUNT(DISTINCT InvoiceNo) AS countOfReturn FROM data WHERE InvoiceNo LIKE 'C%' GROUP BY Country")
    buyDF = spark.sql("SELECT Country AS Country2,COUNT(DISTINCT InvoiceNo) AS countOfBuy FROM data WHERE InvoiceNo NOT LIKE 'C%' GROUP BY Country2")
    buyReturnDF = returnDF.join(buyDF, returnDF["Country"] == buyDF["Country2"], "left_outer")
    buyReturnDF = buyReturnDF.select(buyReturnDF["Country"],buyReturnDF["countOfBuy"],buyReturnDF["countOfReturn"])
    return buyReturnDF.collect()
  1. 商品的平均单价与销量的关系
    通过计算每个商品的平均单价和总销量,展示二者的关系:
python 复制代码
def unitPriceSales():
    unitPriceSalesDF = spark.sql("SELECT StockCode,AVG(DISTINCT UnitPrice) AS avgUnitPrice,SUM(Quantity) AS sumOfQuantity FROM data GROUP BY StockCode")
    return unitPriceSalesDF.collect()

3. 数据结果保存

所有分析结果都以 JSON 格式保存到 static/ 目录。我们定义了一个简单的 save() 函数来处理文件写入:

python 复制代码
def save(path, data):
    with open(path, 'w') as f:
        f.write(data)

4. 使用 Bottle 框架搭建 Web 服务器

为了展示这些分析结果,我们使用了 Bottle 框架,提供静态文件服务。Web 服务器代码如下:

python 复制代码
from bottle import route, run, static_file

@route('/static/<filename>')
def server_static(filename):
    return static_file(filename, root="./static")

@route("/<name:re:.*\.html>")
def server_page(name):
    return static_file(name, root=".")

@route("/")
def index():
    return static_file("index.html", root=".")

通过访问 /static/filename 可以获取生成的 JSON 文件,访问 / 可以加载主页 index.html。

5. 运行项目

运行项目非常简单,只需启动 Python 脚本,它将自动生成分析结果,并启动 Bottle Web 服务器。

python 复制代码
python app.py

在浏览器中访问 http://localhost:9999 即可查看分析结果。








总结

通过 PySpark 处理海量电商数据,并将结果可视化,是数据分析和数据工程领域的典型场景。本项目展示了如何通过 Spark 进行数据的处理和分析,结合 Bottle 框架实现简单的 Web 服务,将结果供用户查看。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等

相关推荐
阿里云大数据AI技术10 小时前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx35215 小时前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
计算机毕业设计木哥19 小时前
计算机毕设选题推荐:基于Java+SpringBoot物品租赁管理系统【源码+文档+调试】
java·vue.js·spring boot·mysql·spark·毕业设计·课程设计
T062051419 小时前
工具变量-5G试点城市DID数据(2014-2025年
大数据
羊羊小栈19 小时前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
向往鹰的翱翔20 小时前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
鸿乃江边鸟20 小时前
向量化和列式存储
大数据·sql·向量化
IT毕设梦工厂21 小时前
大数据毕业设计选题推荐-基于大数据的客户购物订单数据分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·hadoop·数据分析·spark·毕业设计·源码·bigdata
java水泥工21 小时前
基于Echarts+HTML5可视化数据大屏展示-白茶大数据溯源平台V2
大数据·echarts·html5
广州腾科助你拿下华为认证1 天前
华为考试:HCIE数通考试难度分析
大数据·华为