pytorch计算网络参数量和Flops

python 复制代码
from torchsummary import summary
summary(net, input_size=(3, 256, 256), batch_size=-1)

输出的参数是除以一百万(/1000000)M,

python 复制代码
from fvcore.nn import FlopCountAnalysis
inputs = torch.randn(1, 3, 256, 256).cuda()
flop_counter = FlopCountAnalysis(net, inputs)
print(f"FLOPs: {flop_counter.total()}")

输出的参数是B,(/1024/1024/1024)G,(/1024/1024/1024/1024)T

相关推荐
ATM0061 小时前
人机协作系列(四)AI编程的下一个范式革命——看Factory AI如何重构软件工程?
人工智能·大模型·agent·人机协作·人机协同
读创商闻2 小时前
极狐GitLab CEO 柳钢——极狐 GitLab 打造中国企业专属 AI 编程平台,引领编程新潮流
人工智能·gitlab
kailp2 小时前
语言模型玩转3D生成:LLaMA-Mesh开源项目
人工智能·3d·ai·语言模型·llama·gpu算力
marteker2 小时前
弗兰肯斯坦式的人工智能与GTM策略的崩溃
人工智能·搜索引擎
无心水2 小时前
大语言模型零样本情感分析实战:无需机器学习训练,96%准确率实现指南
人工智能·机器学习·语言模型
来自于狂人2 小时前
AI大模型训练的云原生实践:如何用Kubernetes指挥千卡集群?
人工智能·云原生·kubernetes
橡晟8 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子8 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01058 小时前
什么是神经网络,常用的神经网络,如何训练一个神经网络
人工智能·深度学习·神经网络·ai
Leah01058 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai