pytorch计算网络参数量和Flops

python 复制代码
from torchsummary import summary
summary(net, input_size=(3, 256, 256), batch_size=-1)

输出的参数是除以一百万(/1000000)M,

python 复制代码
from fvcore.nn import FlopCountAnalysis
inputs = torch.randn(1, 3, 256, 256).cuda()
flop_counter = FlopCountAnalysis(net, inputs)
print(f"FLOPs: {flop_counter.total()}")

输出的参数是B,(/1024/1024/1024)G,(/1024/1024/1024/1024)T

相关推荐
杭州杭州杭州3 分钟前
深度学习(1)---基础概念扫盲
人工智能·深度学习
金智维科技官方11 分钟前
破解流程内耗,金智维流程自动化平台如何激活企业效率?
人工智能·ai·自动化·数字化
Brsentibi17 分钟前
深度学习—数据标注—label-studio
深度学习·数据标注·label-studio·yolo数据集自制
私域实战笔记28 分钟前
SCRM平台对比推荐:以企业微信私域运营需求为核心的参考
大数据·人工智能·企业微信·scrm·企业微信scrm
格林威32 分钟前
AOI在FPC制造领域的检测应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造
utmhikari1 小时前
【GitHub探索】代码开发AI辅助工具trae-agent
人工智能·ai·大模型·llm·github·agent·trae
IT_陈寒1 小时前
Python数据处理速度慢?5行代码让你的Pandas提速300% 🚀
前端·人工智能·后端
NewCarRen1 小时前
基于健康指标的自动驾驶全系统运行时安全分析方法
人工智能·安全·自动驾驶·预期功能安全
初心丨哈士奇1 小时前
前端Vibe Coding探索:Cursor+MCP打造沉浸式开发流(使用MCP与Cursor Rules让Vibe Coding更快速与精准)
前端·人工智能
艾莉丝努力练剑1 小时前
【Git:基本操作】深度解析Git:从初始Git到熟悉基本操作
大数据·linux·c++·人工智能·git·gitee·指令