R语言统计分析——用回归做ANOVA

参考资料:R语言实战【第2版】

ANOVA(方差分析)和回归都是广义线性模型的特例,方差分析也都可以使用lm()函数来分析。

R 复制代码
# 加载multcomp包
library(multcomp)
# 查看cholesterol数据集的处理水平
levels(cholesterol$trt)
# 用aov()函数拟合模型
fit.aov<-aov(response~trt,data=cholesterol)
summary(fit.aov)
# 用lm()函数拟合
fit.lm<-lm(response~trt,data=cholesterol)
summary(fit.lm)

因为线性模型要求预测变量为数值型,当lm()函数碰到因子变量时,它会用一系列与因变量相对应的数值型对照变量来代替因子。如果因子变量有k个水平,将会创建k-1个对照变量。R语言提供了5种创建对照变量的内置方法(见下表),我们也可以选择默认,默认情况下,对照处理用于无序因子,正交多项式用于有序因子。

|-----------------|-------------------------------------------------------------|
| 对照变量创建方法 | 描述 |
| contr.helmert | 第二个水平对照第一个水平,第三个水平对照前两个水平的均值,第四个水平对照前三个水平的均值,以此类推。 |
| contr.poly | 基于正交多项式的对照,用于趋势分析(线性、二次、三次等)和等距水平的有序因子 |
| contr.sum | 对照变量之和限制为0。也称作偏差找对,对各水平的聚酯与所有水平的均值进行比较 |
| contr.treatment | 各水平对照基线水平(默认第一个水平),也称作虚拟编码 |
| contr.SAS | 类似于contr.treatment,只是基线水平变成了最后一个水平。生成的系数类似于大部分SAS过程中使用的对照变量 |

对对照(treatment contrast)为例,因子的第一个水平变成了参考组,随后的变量都以它为标准。可以通过contrasts()函数查看它编码过程。

若患者处于drugD条件下,变量drugD等于1,其他变量2times、 4times和drugE都等于0。

无需列出第一组的变量值,因为其他四个变量都为0,这已经说明患者处于1time条件。

在lm()的分析结果来看,变量trt2times表示水平1time和2times的一个对照。类似地,trt4times是1time和4times的一个对照,其余以此类推。从输出的概率值来看,各药物条件与第一组相比( 1time)显著不同。

相关推荐
Jina AI3 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归
全栈开发圈3 天前
干货分享|如何从0到1掌握R语言数据分析
开发语言·数据分析·r语言
西猫雷婶5 天前
scikit-learn/sklearn学习|岭回归解读
开发语言·人工智能·机器学习·支持向量机·回归·scikit-learn·sklearn
小杜的生信筆記6 天前
基于R语言,“上百种机器学习模型”学习教程 | Mime包
开发语言·学习·机器学习·r语言·sci
在打豆豆的小潘学长6 天前
【R语言】多样本单细胞分析_SCTransform+Harmony方案(2)
开发语言·r语言
TS的美梦6 天前
ROGUE: 【张院士团队R包】一种基于熵的用于评估单细胞群体纯度的度量标准
开发语言·r语言
weixin_493202638 天前
R语言代码加密(1)
r语言
Tiger Z8 天前
《R for Data Science (2e)》免费中文翻译 (第3章) --- Data transformation(2)
r语言·数据科学·中文翻译
星石传说10 天前
使用R将nc文件转换为asc文件或者tif文件
r语言·生信
chy存钱罐10 天前
模型拟合问题全解析:从欠拟合、过拟合到正则化(岭回归与拉索回归)
人工智能·算法·机器学习·数据挖掘·回归