R语言统计分析——用回归做ANOVA

参考资料:R语言实战【第2版】

ANOVA(方差分析)和回归都是广义线性模型的特例,方差分析也都可以使用lm()函数来分析。

R 复制代码
# 加载multcomp包
library(multcomp)
# 查看cholesterol数据集的处理水平
levels(cholesterol$trt)
# 用aov()函数拟合模型
fit.aov<-aov(response~trt,data=cholesterol)
summary(fit.aov)
# 用lm()函数拟合
fit.lm<-lm(response~trt,data=cholesterol)
summary(fit.lm)

因为线性模型要求预测变量为数值型,当lm()函数碰到因子变量时,它会用一系列与因变量相对应的数值型对照变量来代替因子。如果因子变量有k个水平,将会创建k-1个对照变量。R语言提供了5种创建对照变量的内置方法(见下表),我们也可以选择默认,默认情况下,对照处理用于无序因子,正交多项式用于有序因子。

|-----------------|-------------------------------------------------------------|
| 对照变量创建方法 | 描述 |
| contr.helmert | 第二个水平对照第一个水平,第三个水平对照前两个水平的均值,第四个水平对照前三个水平的均值,以此类推。 |
| contr.poly | 基于正交多项式的对照,用于趋势分析(线性、二次、三次等)和等距水平的有序因子 |
| contr.sum | 对照变量之和限制为0。也称作偏差找对,对各水平的聚酯与所有水平的均值进行比较 |
| contr.treatment | 各水平对照基线水平(默认第一个水平),也称作虚拟编码 |
| contr.SAS | 类似于contr.treatment,只是基线水平变成了最后一个水平。生成的系数类似于大部分SAS过程中使用的对照变量 |

对对照(treatment contrast)为例,因子的第一个水平变成了参考组,随后的变量都以它为标准。可以通过contrasts()函数查看它编码过程。

若患者处于drugD条件下,变量drugD等于1,其他变量2times、 4times和drugE都等于0。

无需列出第一组的变量值,因为其他四个变量都为0,这已经说明患者处于1time条件。

在lm()的分析结果来看,变量trt2times表示水平1time和2times的一个对照。类似地,trt4times是1time和4times的一个对照,其余以此类推。从输出的概率值来看,各药物条件与第一组相比( 1time)显著不同。

相关推荐
quant_19863 小时前
R语言如何接入实时行情接口
开发语言·经验分享·笔记·python·websocket·金融·r语言
微光-沫年19 小时前
141-CEEMDAN-VMD-Transformer-BiLSTM-ABKDE多变量区间预测模型!
算法·matlab·回归
小白学大数据1 天前
R语言爬虫实战:如何爬取分页链接并批量保存
开发语言·爬虫·信息可视化·r语言
路溪非溪2 天前
机器学习:更多分类回归算法之决策树、SVM、KNN
机器学习·分类·回归
开开心心_Every2 天前
便捷的Office批量转PDF工具
开发语言·人工智能·r语言·pdf·c#·音视频·symfony
巴伦是只猫3 天前
【机器学习笔记Ⅰ】11 多项式回归
笔记·机器学习·回归
Chef_Chen4 天前
从0开始学习R语言--Day39--Spearman 秩相关
开发语言·学习·r语言
IT古董4 天前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
q567315236 天前
R语言初学者爬虫简单模板
开发语言·爬虫·r语言·iphone
IT古董6 天前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(3)决策树回归模型(Decision Tree Regression)
神经网络·机器学习·回归