R语言统计分析——用回归做ANOVA

参考资料:R语言实战【第2版】

ANOVA(方差分析)和回归都是广义线性模型的特例,方差分析也都可以使用lm()函数来分析。

R 复制代码
# 加载multcomp包
library(multcomp)
# 查看cholesterol数据集的处理水平
levels(cholesterol$trt)
# 用aov()函数拟合模型
fit.aov<-aov(response~trt,data=cholesterol)
summary(fit.aov)
# 用lm()函数拟合
fit.lm<-lm(response~trt,data=cholesterol)
summary(fit.lm)

因为线性模型要求预测变量为数值型,当lm()函数碰到因子变量时,它会用一系列与因变量相对应的数值型对照变量来代替因子。如果因子变量有k个水平,将会创建k-1个对照变量。R语言提供了5种创建对照变量的内置方法(见下表),我们也可以选择默认,默认情况下,对照处理用于无序因子,正交多项式用于有序因子。

|-----------------|-------------------------------------------------------------|
| 对照变量创建方法 | 描述 |
| contr.helmert | 第二个水平对照第一个水平,第三个水平对照前两个水平的均值,第四个水平对照前三个水平的均值,以此类推。 |
| contr.poly | 基于正交多项式的对照,用于趋势分析(线性、二次、三次等)和等距水平的有序因子 |
| contr.sum | 对照变量之和限制为0。也称作偏差找对,对各水平的聚酯与所有水平的均值进行比较 |
| contr.treatment | 各水平对照基线水平(默认第一个水平),也称作虚拟编码 |
| contr.SAS | 类似于contr.treatment,只是基线水平变成了最后一个水平。生成的系数类似于大部分SAS过程中使用的对照变量 |

对对照(treatment contrast)为例,因子的第一个水平变成了参考组,随后的变量都以它为标准。可以通过contrasts()函数查看它编码过程。

若患者处于drugD条件下,变量drugD等于1,其他变量2times、 4times和drugE都等于0。

无需列出第一组的变量值,因为其他四个变量都为0,这已经说明患者处于1time条件。

在lm()的分析结果来看,变量trt2times表示水平1time和2times的一个对照。类似地,trt4times是1time和4times的一个对照,其余以此类推。从输出的概率值来看,各药物条件与第一组相比( 1time)显著不同。

相关推荐
A林玖17 小时前
【计算机相关学习】R语言
开发语言·学习·r语言
Yolo566Q1 天前
R语言、BIOMOD2丨物种分布模型研究进展与挑战
r语言
云和数据.ChenGuang1 天前
机器学习之回归算法
人工智能·机器学习·回归
岁月如歌,青春不败1 天前
MaxEnt模型全解析:从原理到 R 语言实战,开启生态环境研究新视野
arcgis·r语言·生态学·论文写作·生态系统服务·物种分布·maxent模型
fantasy_arch2 天前
深度学习--softmax回归
人工智能·深度学习·回归
invincible_Tang2 天前
R格式 (15届B) 高精度
开发语言·算法·r语言
KY_chenzhao2 天前
基于R语言与MaxEnt的物种分布建模全流程解析:从算法优化到科研制图实战
r语言·maxent·气候变化·物种分布
tRNA做科研2 天前
通过Bioconductor/BiocManager安装生物r包详解(问题汇总)
开发语言·r语言·生物信息学·bioconductor·biocmanager
Tiger Z2 天前
R 语言科研绘图 --- 韦恩图-汇总
开发语言·程序人生·r语言·贴图
机器学习之心3 天前
区间预测 | QRTCN时间卷积神经网络分位数回归时间序列区间预测模型(Matlab完整源码和数据)
matlab·回归·cnn·分位数回归·时间卷积神经网络·qrtcn·区间预测模型