pytorch-AutoEncoders实战之VAE

目录

  • [1. VAE回顾](#1. VAE回顾)
  • [2. KL的计算公式](#2. KL的计算公式)
  • [3. 构建网络](#3. 构建网络)
  • [4. 模型训练](#4. 模型训练)

1. VAE回顾

VAE = Variational Auto Encoder,变分自编码器。是一种常见的生成模型,属于无监督学习的范畴。它能够学习一个函数/模型,使得输出数据的分布尽可能的逼近原始数据分布,其基本思路是:把一堆真实样本通过编码器网络变换成一个理想的数据分布,然后这个数据分布再传递给一个解码器网络,得到一堆生成样本,生成样本与真实样本足够接近的话,就训练出了一个VAE模型.

下图中的公式,前半部分计算的是重建误差,可以理解为MSE或者是Cross Entropy,而后半部分KL是散度的公式,主要是计算q分布与p分布的相似度。

那么公式的目标就是重建误差越小越好,q和p的分布越接近越好。

2. KL的计算公式

reparametrize trick

按照上图推导公式实现即可。

3. 构建网络

根据公式可以知道,前半部分计算的是重建误差,后半部分是KL,再根据reparametrize trick分别计算z和epison~N(0, 1)

先将encode的[b,20],切分为两个[b,10]分别作为μ和σ,通过μ和σ计算z值,代码如下:

python 复制代码
 mu, sigma = h_.chunk(2, dim=1)
 # reparametrize trick, epison~N(0, 1)
 z = mu + sigma * torch.randn_like(sigma)

计算KL,根据2中的推导公式写代码即可,代码中batchsz2828意思是计算像素级的kld,1e-8是防止log函数变量为0时,趋于无穷大,这里起到限幅的作用

python 复制代码
kld = 0.5 * torch.sum(
            torch.pow(mu, 2) +
            torch.pow(sigma, 2) -
            torch.log(1e-8 + torch.pow(sigma, 2)) - 1
        ) / (batchsz*28*28)

完整代码:

python 复制代码
import  torch
from    torch import nn

class VAE(nn.Module):

    def __init__(self):
        super(VAE, self).__init__()

        # [b, 784] => [b, 20]
        # u: [b, 10]
        # sigma: [b, 10]
        self.encoder = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 64),
            nn.ReLU(),
            nn.Linear(64, 20),
            nn.ReLU()
        )
        # [b, 20] => [b, 784]
        self.decoder = nn.Sequential(
            nn.Linear(10, 64),
            nn.ReLU(),
            nn.Linear(64, 256),
            nn.ReLU(),
            nn.Linear(256, 784),
            nn.Sigmoid()
        )

        self.criteon = nn.MSELoss()

    def forward(self, x):
        """

        :param x: [b, 1, 28, 28]
        :return:
        """
        batchsz = x.size(0)
        # flatten
        x = x.view(batchsz, 784)
        # encoder
        # [b, 20], including mean and sigma
        h_ = self.encoder(x)
        # [b, 20] => [b, 10] and [b, 10]
        mu, sigma = h_.chunk(2, dim=1)
        # reparametrize trick, epison~N(0, 1)
        h = mu + sigma * torch.randn_like(sigma)

        # decoder
        x_hat = self.decoder(h)
        # reshape
        x_hat = x_hat.view(batchsz, 1, 28, 28)

        kld = 0.5 * torch.sum(
            torch.pow(mu, 2) +
            torch.pow(sigma, 2) -
            torch.log(1e-8 + torch.pow(sigma, 2)) - 1
        ) / (batchsz*28*28)

        return x_hat, kld

4. 模型训练

与上一篇的AutoEncoders步骤相近,这里不再详述

python 复制代码
import  torch
from    torch.utils.data import DataLoader
from    torch import nn, optim
from    torchvision import transforms, datasets

from    ae import AE
from    vae import VAE

import  visdom

def main():
    mnist_train = datasets.MNIST('mnist', True, transform=transforms.Compose([
        transforms.ToTensor()
    ]), download=True)
    mnist_train = DataLoader(mnist_train, batch_size=32, shuffle=True)

    mnist_test = datasets.MNIST('mnist', False, transform=transforms.Compose([
        transforms.ToTensor()
    ]), download=True)
    mnist_test = DataLoader(mnist_test, batch_size=32, shuffle=True)

    x, _ = iter(mnist_train).next()
    print('x:', x.shape)

    device = torch.device('cuda')
    # model = AE().to(device)
    model = VAE().to(device)
    criteon = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)

    viz = visdom.Visdom()

    for epoch in range(1000):
        for batchidx, (x, _) in enumerate(mnist_train):
            # [b, 1, 28, 28]
            x = x.to(device)

            x_hat, kld = model(x)
            loss = criteon(x_hat, x)

            if kld is not None:
                elbo = - loss - 1.0 * kld
                loss = - elbo

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()


        print(epoch, 'loss:', loss.item(), 'kld:', kld.item())

        x, _ = iter(mnist_test).next()
        x = x.to(device)
        with torch.no_grad():
            x_hat, kld = model(x)
        viz.images(x, nrow=8, win='x', opts=dict(title='x'))
        viz.images(x_hat, nrow=8, win='x_hat', opts=dict(title='x_hat'))

if __name__ == '__main__':
    main()
相关推荐
java_heartLake1 小时前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生2 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
久绊A2 小时前
Python 基本语法的详细解释
开发语言·windows·python
diemeng11193 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li3 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
Hylan_J5 小时前
【VSCode】MicroPython环境配置
ide·vscode·python·编辑器
莫忘初心丶5 小时前
在 Ubuntu 22 上使用 Gunicorn 启动 Flask 应用程序
python·ubuntu·flask·gunicorn
牧歌悠悠7 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬8 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬8 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构