pytorch-AutoEncoders实战之VAE

目录

  • [1. VAE回顾](#1. VAE回顾)
  • [2. KL的计算公式](#2. KL的计算公式)
  • [3. 构建网络](#3. 构建网络)
  • [4. 模型训练](#4. 模型训练)

1. VAE回顾

VAE = Variational Auto Encoder,变分自编码器。是一种常见的生成模型,属于无监督学习的范畴。它能够学习一个函数/模型,使得输出数据的分布尽可能的逼近原始数据分布,其基本思路是:把一堆真实样本通过编码器网络变换成一个理想的数据分布,然后这个数据分布再传递给一个解码器网络,得到一堆生成样本,生成样本与真实样本足够接近的话,就训练出了一个VAE模型.

下图中的公式,前半部分计算的是重建误差,可以理解为MSE或者是Cross Entropy,而后半部分KL是散度的公式,主要是计算q分布与p分布的相似度。

那么公式的目标就是重建误差越小越好,q和p的分布越接近越好。

2. KL的计算公式

reparametrize trick

按照上图推导公式实现即可。

3. 构建网络

根据公式可以知道,前半部分计算的是重建误差,后半部分是KL,再根据reparametrize trick分别计算z和epison~N(0, 1)

先将encode的[b,20],切分为两个[b,10]分别作为μ和σ,通过μ和σ计算z值,代码如下:

python 复制代码
 mu, sigma = h_.chunk(2, dim=1)
 # reparametrize trick, epison~N(0, 1)
 z = mu + sigma * torch.randn_like(sigma)

计算KL,根据2中的推导公式写代码即可,代码中batchsz2828意思是计算像素级的kld,1e-8是防止log函数变量为0时,趋于无穷大,这里起到限幅的作用

python 复制代码
kld = 0.5 * torch.sum(
            torch.pow(mu, 2) +
            torch.pow(sigma, 2) -
            torch.log(1e-8 + torch.pow(sigma, 2)) - 1
        ) / (batchsz*28*28)

完整代码:

python 复制代码
import  torch
from    torch import nn

class VAE(nn.Module):

    def __init__(self):
        super(VAE, self).__init__()

        # [b, 784] => [b, 20]
        # u: [b, 10]
        # sigma: [b, 10]
        self.encoder = nn.Sequential(
            nn.Linear(784, 256),
            nn.ReLU(),
            nn.Linear(256, 64),
            nn.ReLU(),
            nn.Linear(64, 20),
            nn.ReLU()
        )
        # [b, 20] => [b, 784]
        self.decoder = nn.Sequential(
            nn.Linear(10, 64),
            nn.ReLU(),
            nn.Linear(64, 256),
            nn.ReLU(),
            nn.Linear(256, 784),
            nn.Sigmoid()
        )

        self.criteon = nn.MSELoss()

    def forward(self, x):
        """

        :param x: [b, 1, 28, 28]
        :return:
        """
        batchsz = x.size(0)
        # flatten
        x = x.view(batchsz, 784)
        # encoder
        # [b, 20], including mean and sigma
        h_ = self.encoder(x)
        # [b, 20] => [b, 10] and [b, 10]
        mu, sigma = h_.chunk(2, dim=1)
        # reparametrize trick, epison~N(0, 1)
        h = mu + sigma * torch.randn_like(sigma)

        # decoder
        x_hat = self.decoder(h)
        # reshape
        x_hat = x_hat.view(batchsz, 1, 28, 28)

        kld = 0.5 * torch.sum(
            torch.pow(mu, 2) +
            torch.pow(sigma, 2) -
            torch.log(1e-8 + torch.pow(sigma, 2)) - 1
        ) / (batchsz*28*28)

        return x_hat, kld

4. 模型训练

与上一篇的AutoEncoders步骤相近,这里不再详述

python 复制代码
import  torch
from    torch.utils.data import DataLoader
from    torch import nn, optim
from    torchvision import transforms, datasets

from    ae import AE
from    vae import VAE

import  visdom

def main():
    mnist_train = datasets.MNIST('mnist', True, transform=transforms.Compose([
        transforms.ToTensor()
    ]), download=True)
    mnist_train = DataLoader(mnist_train, batch_size=32, shuffle=True)

    mnist_test = datasets.MNIST('mnist', False, transform=transforms.Compose([
        transforms.ToTensor()
    ]), download=True)
    mnist_test = DataLoader(mnist_test, batch_size=32, shuffle=True)

    x, _ = iter(mnist_train).next()
    print('x:', x.shape)

    device = torch.device('cuda')
    # model = AE().to(device)
    model = VAE().to(device)
    criteon = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    print(model)

    viz = visdom.Visdom()

    for epoch in range(1000):
        for batchidx, (x, _) in enumerate(mnist_train):
            # [b, 1, 28, 28]
            x = x.to(device)

            x_hat, kld = model(x)
            loss = criteon(x_hat, x)

            if kld is not None:
                elbo = - loss - 1.0 * kld
                loss = - elbo

            # backprop
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()


        print(epoch, 'loss:', loss.item(), 'kld:', kld.item())

        x, _ = iter(mnist_test).next()
        x = x.to(device)
        with torch.no_grad():
            x_hat, kld = model(x)
        viz.images(x, nrow=8, win='x', opts=dict(title='x'))
        viz.images(x_hat, nrow=8, win='x_hat', opts=dict(title='x_hat'))

if __name__ == '__main__':
    main()
相关推荐
武子康1 分钟前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
deephub2 分钟前
Tokenformer:基于参数标记化的高效可扩展Transformer架构
人工智能·python·深度学习·架构·transformer
Q8137574608 分钟前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
qzhqbb11 分钟前
语言模型的采样方法
人工智能·语言模型·自然语言处理
qzhqbb14 分钟前
基于 Transformer 的语言模型
人工智能·语言模型·自然语言处理·transformer
___Dream15 分钟前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
Open-AI19 分钟前
Python如何判断一个数是几位数
python
极客代码22 分钟前
【Python TensorFlow】入门到精通
开发语言·人工智能·python·深度学习·tensorflow
义小深25 分钟前
TensorFlow|咖啡豆识别
人工智能·python·tensorflow
疯一样的码农29 分钟前
Python 正则表达式(RegEx)
开发语言·python·正则表达式