如何理解深度学习的训练过程

文章目录

1.训练是干什么?

以yolov5为例子,训练的目的是把一组输入猫狗图像放到神经网络中,得到一个输出模型,这个模型下次可以直接用来识别哪个是猫,哪个是狗

2.预训练模型进行训练,主要更改的是预训练模型的什么东西?

  • 超参数(Hyperparameters):

这是模型结构中定义的参数,比如:

卷积核大小(kernel_size):影响特征提取的精细程度。

步长(stride):决定卷积操作在输入特征图上的移动幅度,影响输出的特征图大小。

激活函数(如SiLU):影响非线性变换的方式。

层数、通道数(如卷积核数量、隐藏层数量):影响模型的复杂度。

调整这些超参数不涉及对模型本身权重的学习,而是你手动设计模型结构的过程。你可以手动设置这些参数,优化模型的表现。

  • 模型参数(Trainable Parameters):

这是模型在训练过程中通过数据自动学习的参数,主要是卷积层的权重和偏置。比如卷积核内部的权重(Conv2d中的weights和bias)会随着训练数据的输入和误差的反馈不断更新。

这些参数是在反向传播过程中由优化器(如Adam、SGD等)自动调整的,目的是使模型更好地拟合训练数据。(这里的weights和bias是隐含的,不会出现在打印出的网络结构中)

相关推荐
昨日之日20061 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_1 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover1 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川2 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
API快乐传递者2 小时前
淘宝反爬虫机制的主要手段有哪些?
爬虫·python
阡之尘埃4 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
西柚小萌新6 小时前
七.numpy模块
numpy
孙同学要努力6 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20216 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧37 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab