如何理解深度学习的训练过程

文章目录

1.训练是干什么?

以yolov5为例子,训练的目的是把一组输入猫狗图像放到神经网络中,得到一个输出模型,这个模型下次可以直接用来识别哪个是猫,哪个是狗

2.预训练模型进行训练,主要更改的是预训练模型的什么东西?

  • 超参数(Hyperparameters):

这是模型结构中定义的参数,比如:

卷积核大小(kernel_size):影响特征提取的精细程度。

步长(stride):决定卷积操作在输入特征图上的移动幅度,影响输出的特征图大小。

激活函数(如SiLU):影响非线性变换的方式。

层数、通道数(如卷积核数量、隐藏层数量):影响模型的复杂度。

调整这些超参数不涉及对模型本身权重的学习,而是你手动设计模型结构的过程。你可以手动设置这些参数,优化模型的表现。

  • 模型参数(Trainable Parameters):

这是模型在训练过程中通过数据自动学习的参数,主要是卷积层的权重和偏置。比如卷积核内部的权重(Conv2d中的weights和bias)会随着训练数据的输入和误差的反馈不断更新。

这些参数是在反向传播过程中由优化器(如Adam、SGD等)自动调整的,目的是使模型更好地拟合训练数据。(这里的weights和bias是隐含的,不会出现在打印出的网络结构中)

相关推荐
小王努力学编程5 小时前
LangChain——AI应用开发框架(核心组件2)
linux·服务器·c++·人工智能·python·langchain·信号
shengMio5 小时前
周报——2026.1.19-1.25
深度学习·论文写作
_Soy_Milk5 小时前
【算法工程师】—— Pytorch
人工智能·pytorch·算法
bing.shao5 小时前
文心大模型 5.0 正式版上线:用 Golang 解锁全模态 AI 工业化落地新路径
人工智能·golang·dubbo
lina_mua5 小时前
Cursor模型选择完全指南:为前端开发找到最佳AI助手
java·前端·人工智能·编辑器·visual studio
高洁015 小时前
数字孪生应用于特种设备领域的技术难点
人工智能·python·深度学习·机器学习·知识图谱
秋95 小时前
idea中如何使用Trae AI插件,并举例说明
java·人工智能·intellij-idea
一尘之中5 小时前
认知革命:从UFO到天乘
人工智能·数据挖掘·ai写作
Piar1231sdafa5 小时前
基于YOLOv26的海洋鱼类识别与检测系统深度学习训练数据集Python实现_1
python·深度学习·yolo
不会代码的小测试5 小时前
页面动态元素无法快速复制定位解决
python·selenium·自动化