如何理解深度学习的训练过程

文章目录

1.训练是干什么?

以yolov5为例子,训练的目的是把一组输入猫狗图像放到神经网络中,得到一个输出模型,这个模型下次可以直接用来识别哪个是猫,哪个是狗

2.预训练模型进行训练,主要更改的是预训练模型的什么东西?

  • 超参数(Hyperparameters):

这是模型结构中定义的参数,比如:

卷积核大小(kernel_size):影响特征提取的精细程度。

步长(stride):决定卷积操作在输入特征图上的移动幅度,影响输出的特征图大小。

激活函数(如SiLU):影响非线性变换的方式。

层数、通道数(如卷积核数量、隐藏层数量):影响模型的复杂度。

调整这些超参数不涉及对模型本身权重的学习,而是你手动设计模型结构的过程。你可以手动设置这些参数,优化模型的表现。

  • 模型参数(Trainable Parameters):

这是模型在训练过程中通过数据自动学习的参数,主要是卷积层的权重和偏置。比如卷积核内部的权重(Conv2d中的weights和bias)会随着训练数据的输入和误差的反馈不断更新。

这些参数是在反向传播过程中由优化器(如Adam、SGD等)自动调整的,目的是使模型更好地拟合训练数据。(这里的weights和bias是隐含的,不会出现在打印出的网络结构中)

相关推荐
ALe要立志成为web糕手几秒前
SESSION_UPLOAD_PROGRESS 的利用
python·web安全·网络安全·ctf
极客天成ScaleFlash21 分钟前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
Uzuki26 分钟前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
澳鹏Appen1 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
Tttian6221 小时前
Python办公自动化(3)对Excel的操作
开发语言·python·excel
蹦蹦跳跳真可爱5892 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库2 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
独好紫罗兰3 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
xinxiyinhe3 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
zhuyixiangyyds3 小时前
day21和day22学习Pandas库
笔记·学习·pandas