BART&BERT

BART和BERT都是基于Transformer架构的预训练语言模型。

  1. 模型架构

    • BERT (Bidirectional Encoder Representations from Transformers) 主要是一个编码器(Encoder)模型,它使用了Transformer的编码器部分来处理输入的文本,并生成文本的表示。BERT特别擅长理解语言的上下文,因为它在预训练阶段使用了掩码语言模型(MLM)任务,即随机遮蔽一些单词,然后让模型预测这些被遮蔽的单词。
    • BART 是一个解码器(Decoder)模型,它使用了Transformer的解码器部分。BART在预训练阶段使用了类似于BERT的MLM任务,但它还包括了一个下一句预测(NSP)任务,这使得BART在生成文本方面更为擅长。
  2. 预训练任务

    • BERT的预训练任务主要是MLM,它随机遮蔽输入文本中的一些单词,并让模型预测这些单词。
    • BART的预训练任务除了MLM,还包括一个句子排列任务,即模型需要预测给定句子序列的正确顺序。
  3. 应用场景

    • BERT通常用于需要理解文本的任务,如文本分类、命名实体识别、问答系统等。
    • BART则更适合于文本生成任务,如摘要、翻译、文本填空等。
  4. 生成方式

    • BERT是一个自回归模型,它在生成文本时是逐词生成的,每次只预测一个词。
    • BART也是一个自回归模型,但它在生成文本时可以更灵活地处理序列到序列的任务,例如在机器翻译中将一个句子从一种语言翻译成另一种语言。
  5. 使用以下代码来加载BERT模型并进行一个简单的文本分类任务: from transformers import BertTokenizer, BertForSequenceClassification

    import torch

    加载预训练的BERT模型和分词器

    model_name = "bert-base-uncased" # 选择一个BERT模型

    tokenizer = BertTokenizer.from_pretrained(model_name)

    model = BertForSequenceClassification.from_pretrained(model_name)

    准备输入数据

    text = "This is a positive example." # 一个正面的例子

    encoded_input = tokenizer(text, return_tensors='pt')

    模型预测

    model.eval() # 将模型设置为评估模式

    with torch.no_grad():

    output = model(**encoded_input)

    输出预测结果

    predictions = torch.nn.functional.softmax(output.logits, dim=-1)

    print(predictions)

  6. 对于BART模型,进行文本摘要任务,可以使用以下代码: from transformers import BartTokenizer, BartForConditionalGeneration

    import torch

    加载预训练的BART模型和分词器

    model_name = "facebook/bart-large-cnn" # 选择一个BART模型,这里使用CNN新闻摘要任务的预训练模型

    tokenizer = BartTokenizer.from_pretrained(model_name)

    model = BartForConditionalGeneration.from_pretrained(model_name)

    准备输入数据

    text = "The quick brown fox jumps over the lazy dog." # 一个完整的句子

    encoded_input = tokenizer(text, return_tensors='pt', max_length=512, truncation=True)

    生成摘要

    model.eval() # 将模型设置为评估模式

    with torch.no_grad():

    output = model.generate(**encoded_input, max_length=20)

    输出生成的摘要

    print(tokenizer.decode(output[0], skip_special_tokens=True))

  7. 模型目标

    • BERT的目标是提高对文本的理解能力,通过预训练的上下文表示来增强下游任务的性能。
    • BART的目标是提高文本生成的能力,通过预训练的序列到序列表示来增强生成文本的连贯性和准确性。

尽管BART和BERT在设计和应用上有所不同,但它们都利用了Transformer的强大能力来处理自然语言,并在NLP领域取得了显著的成果。

相关推荐
聆风吟º1 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
User_芊芊君子1 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能2 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
人工不智能5772 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
h64648564h2 小时前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
心疼你的一切2 小时前
解密CANN仓库:AIGC的算力底座、关键应用与API实战解析
数据仓库·深度学习·aigc·cann
学电子她就能回来吗4 小时前
深度学习速成:损失函数与反向传播
人工智能·深度学习·学习·计算机视觉·github
Coder_Boy_5 小时前
TensorFlow小白科普
人工智能·深度学习·tensorflow·neo4j
大模型玩家七七5 小时前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
kkzhang5 小时前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习