pytorch持久化

在pytorch中以下对象可以持久化到硬盘,并能通过相应的方法加载到内存:Tensor、Variable、nn.Module、Optimizer

本质上上述信息最终都是保存成Tensor,Tensor的保存和加载是使用torch.savetorch.load完成的。在save、load时可以指定使用的pickle模块,在load时还可将GPU tensor映射到CPU或其它GPU上。

torch.savetorch.load

python 复制代码
import torch

# 1.变量的保存与加载
a = torch.Tensor(3,4)
print(a.get_device())  # -1,代表CPU
if torch.cuda.is_available():
    a = a.cuda()   # 把a转换为GPU0上的tensor
    torch.save(a, 'a.pth')

    # 加载为b,存储于GPU0上,因为保存时tensor就在GPU0上
    b = torch.load('a.pth')
    print(b.get_device())   # 0

    # 加载为d,存储于GPU0上
    c = torch.load('a.pth', map_location={'cuda:0':'cuda:0'})
    print(c.get_device())   # 0


    # 加载为c,存储于CPU上
    d = torch.load('a.pth', map_location=lambda storage, loc: storage)
    print(d.get_device())   # -1,代表CPU

    # 加载为d,存储于CPU上
    e = torch.load('a.pth', map_location={'cuda:0':'cpu'})
    print(e.get_device())   # -1,代表CPU


# 2.模型的保存与加载
from torchvision.models import resnet18
model = resnet18()
torch.save(model.state_dict(), 'resnet18.pth')
model.load_state_dict(torch.load('resnet18.pth'))

# 3.优化器的保存与加载
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
torch.save(optimizer.state_dict(), 'optimizer.pth')
optimizer.load_state_dict(torch.load('optimizer.pth'))

# 4.保存模型和优化器的所有参数
all_data = dict(optimizer=optimizer.state_dict(), model=model.state_dict(), info=u'模型和优化器的所有参数')
torch.save(all_data, 'all.pth')
all_data = torch.load('all.pth')
print(all_data.keys())
相关推荐
永霖光电_UVLED1 天前
NUBURU启动Q1阶段,实现40套高功率蓝光激光系统的量产
大数据·人工智能
RFG20121 天前
20、详解Dubbo框架:消费方如何动态获取服务提供方地址?【微服务架构入门】
java·人工智能·后端·微服务·云原生·架构·dubbo
紫微AI1 天前
适用于代理Agents的语言
人工智能·agents·新语言
CCPC不拿奖不改名1 天前
虚拟机基础:在VMware WorkStation上安装Linux为容器化部署打基础
linux·运维·服务器·人工智能·milvus·知识库搭建·容器化部署
这是个栗子1 天前
AI辅助编程工具(六) - CodeGeeX
人工智能·ai·codegeex
vortesnail1 天前
超详细的云服务部署 OpenClaw 并接入飞书全流程,别再趟坑了
人工智能·程序员·openai
紫微AI1 天前
Anthropic Claude Code 工程博客精读:构建可靠长时运行AI代理的有效框架实践
人工智能
量子-Alex1 天前
【大模型思维链】自洽性提升语言模型中的思维链推理能力
人工智能·语言模型·自然语言处理
月光有害1 天前
Batch 与 Mini-Batch 梯度下降的权衡与选择
人工智能
之歆1 天前
智能体 - AI 幻觉
人工智能