pytorch持久化

在pytorch中以下对象可以持久化到硬盘,并能通过相应的方法加载到内存:Tensor、Variable、nn.Module、Optimizer

本质上上述信息最终都是保存成Tensor,Tensor的保存和加载是使用torch.savetorch.load完成的。在save、load时可以指定使用的pickle模块,在load时还可将GPU tensor映射到CPU或其它GPU上。

torch.savetorch.load

python 复制代码
import torch

# 1.变量的保存与加载
a = torch.Tensor(3,4)
print(a.get_device())  # -1,代表CPU
if torch.cuda.is_available():
    a = a.cuda()   # 把a转换为GPU0上的tensor
    torch.save(a, 'a.pth')

    # 加载为b,存储于GPU0上,因为保存时tensor就在GPU0上
    b = torch.load('a.pth')
    print(b.get_device())   # 0

    # 加载为d,存储于GPU0上
    c = torch.load('a.pth', map_location={'cuda:0':'cuda:0'})
    print(c.get_device())   # 0


    # 加载为c,存储于CPU上
    d = torch.load('a.pth', map_location=lambda storage, loc: storage)
    print(d.get_device())   # -1,代表CPU

    # 加载为d,存储于CPU上
    e = torch.load('a.pth', map_location={'cuda:0':'cpu'})
    print(e.get_device())   # -1,代表CPU


# 2.模型的保存与加载
from torchvision.models import resnet18
model = resnet18()
torch.save(model.state_dict(), 'resnet18.pth')
model.load_state_dict(torch.load('resnet18.pth'))

# 3.优化器的保存与加载
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
torch.save(optimizer.state_dict(), 'optimizer.pth')
optimizer.load_state_dict(torch.load('optimizer.pth'))

# 4.保存模型和优化器的所有参数
all_data = dict(optimizer=optimizer.state_dict(), model=model.state_dict(), info=u'模型和优化器的所有参数')
torch.save(all_data, 'all.pth')
all_data = torch.load('all.pth')
print(all_data.keys())
相关推荐
阿杰学AI2 分钟前
AI核心知识56——大语言模型之ToT(简洁且通俗易懂版)
人工智能·ai·语言模型·提示工程·tot·pe·思维树
Baihai_IDP2 分钟前
你说的 CUDA 到底是哪个 CUDA?一文理清那些让人混淆的术语和版本号
人工智能·面试·llm
道19939 分钟前
PyTorch 高级进阶教程之深度实战实例(四)
人工智能·pytorch·python
Lun3866buzha10 分钟前
【深度学习】【目标检测】改进YOLOv11香烟包装识别与分类_CSP-PTB优化
深度学习·yolo·目标检测
wayuncn16 分钟前
我国首个虚拟数字人国标发布
人工智能·虚拟数字人·ai数字人·ai智能客服·ai智能体开发定制·ai群聊·ai定制
攻城狮7号18 分钟前
OpenAI开源0.4B参数Circuit-Sparsity模型:给AI大脑做次“极简手术”
人工智能·openai·开源模型·circuit·sparsity·0.4b参数模型
CES_Asia19 分钟前
政策x技术x市场:三位一体推动机器人产业爆发
大数据·人工智能·科技·机器人
彼岸花开了吗20 分钟前
构建AI智能体:五十七、LangGraph + Gradio:构建可视化AI工作流的趣味指南
人工智能·python
小苑同学21 分钟前
Masked Language Models是什么?
人工智能·语言模型·自然语言处理
ASS-ASH25 分钟前
机器人灵巧手:技术演进、市场格局与未来前景
人工智能·深度学习·神经网络·机器学习·计算机视觉·机器人·灵巧手