pytorch持久化

在pytorch中以下对象可以持久化到硬盘,并能通过相应的方法加载到内存:Tensor、Variable、nn.Module、Optimizer

本质上上述信息最终都是保存成Tensor,Tensor的保存和加载是使用torch.savetorch.load完成的。在save、load时可以指定使用的pickle模块,在load时还可将GPU tensor映射到CPU或其它GPU上。

torch.savetorch.load

python 复制代码
import torch

# 1.变量的保存与加载
a = torch.Tensor(3,4)
print(a.get_device())  # -1,代表CPU
if torch.cuda.is_available():
    a = a.cuda()   # 把a转换为GPU0上的tensor
    torch.save(a, 'a.pth')

    # 加载为b,存储于GPU0上,因为保存时tensor就在GPU0上
    b = torch.load('a.pth')
    print(b.get_device())   # 0

    # 加载为d,存储于GPU0上
    c = torch.load('a.pth', map_location={'cuda:0':'cuda:0'})
    print(c.get_device())   # 0


    # 加载为c,存储于CPU上
    d = torch.load('a.pth', map_location=lambda storage, loc: storage)
    print(d.get_device())   # -1,代表CPU

    # 加载为d,存储于CPU上
    e = torch.load('a.pth', map_location={'cuda:0':'cpu'})
    print(e.get_device())   # -1,代表CPU


# 2.模型的保存与加载
from torchvision.models import resnet18
model = resnet18()
torch.save(model.state_dict(), 'resnet18.pth')
model.load_state_dict(torch.load('resnet18.pth'))

# 3.优化器的保存与加载
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
torch.save(optimizer.state_dict(), 'optimizer.pth')
optimizer.load_state_dict(torch.load('optimizer.pth'))

# 4.保存模型和优化器的所有参数
all_data = dict(optimizer=optimizer.state_dict(), model=model.state_dict(), info=u'模型和优化器的所有参数')
torch.save(all_data, 'all.pth')
all_data = torch.load('all.pth')
print(all_data.keys())
相关推荐
喵叔哟4 分钟前
02-YOLO-v8-v9-v10工程差异对比
人工智能·yolo·机器学习
玄同7656 分钟前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱
心疼你的一切6 分钟前
模态交响:CANN驱动的跨模态AIGC统一架构
数据仓库·深度学习·架构·aigc·cann
L、2186 分钟前
CANN 内存管理深度解析:高效利用显存,突破 AI 推理瓶颈
人工智能
聊聊科技8 分钟前
原创音乐人使用AI编曲软件制作伴奏,编曲用什么音源好听
人工智能
爱吃烤鸡翅的酸菜鱼8 分钟前
CANN ops-nn卷积算子深度解析与性能优化
人工智能·性能优化·aigc
向哆哆8 分钟前
CANN生态安全保障:cann-security-module技术解读
人工智能·安全·cann
The Straggling Crow9 分钟前
模型全套服务 cube-studio
人工智能
User_芊芊君子11 分钟前
CANN010:PyASC Python编程接口—简化AI算子开发的Python框架
开发语言·人工智能·python
小羊不会打字12 分钟前
CANN 生态中的跨框架兼容桥梁:`onnx-adapter` 项目实现无缝模型迁移
c++·深度学习