pytorch持久化

在pytorch中以下对象可以持久化到硬盘,并能通过相应的方法加载到内存:Tensor、Variable、nn.Module、Optimizer

本质上上述信息最终都是保存成Tensor,Tensor的保存和加载是使用torch.savetorch.load完成的。在save、load时可以指定使用的pickle模块,在load时还可将GPU tensor映射到CPU或其它GPU上。

torch.savetorch.load

python 复制代码
import torch

# 1.变量的保存与加载
a = torch.Tensor(3,4)
print(a.get_device())  # -1,代表CPU
if torch.cuda.is_available():
    a = a.cuda()   # 把a转换为GPU0上的tensor
    torch.save(a, 'a.pth')

    # 加载为b,存储于GPU0上,因为保存时tensor就在GPU0上
    b = torch.load('a.pth')
    print(b.get_device())   # 0

    # 加载为d,存储于GPU0上
    c = torch.load('a.pth', map_location={'cuda:0':'cuda:0'})
    print(c.get_device())   # 0


    # 加载为c,存储于CPU上
    d = torch.load('a.pth', map_location=lambda storage, loc: storage)
    print(d.get_device())   # -1,代表CPU

    # 加载为d,存储于CPU上
    e = torch.load('a.pth', map_location={'cuda:0':'cpu'})
    print(e.get_device())   # -1,代表CPU


# 2.模型的保存与加载
from torchvision.models import resnet18
model = resnet18()
torch.save(model.state_dict(), 'resnet18.pth')
model.load_state_dict(torch.load('resnet18.pth'))

# 3.优化器的保存与加载
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
torch.save(optimizer.state_dict(), 'optimizer.pth')
optimizer.load_state_dict(torch.load('optimizer.pth'))

# 4.保存模型和优化器的所有参数
all_data = dict(optimizer=optimizer.state_dict(), model=model.state_dict(), info=u'模型和优化器的所有参数')
torch.save(all_data, 'all.pth')
all_data = torch.load('all.pth')
print(all_data.keys())
相关推荐
救救孩子把3 小时前
14-机器学习与大模型开发数学教程-第1章 1-6 费马定理与极值判定
人工智能·数学·机器学习
麦麦大数据3 小时前
F024 RNN+Vue+Flask电影推荐可视化系统 python flask mysql 深度学习 echarts
python·rnn·深度学习·vue·echarts·电影推荐
诸葛箫声3 小时前
十类图片深度学习提升准确率(0.9317)
人工智能·深度学习
救救孩子把3 小时前
11-机器学习与大模型开发数学教程-第1章1-3 极限与连续性
人工智能·数学·机器学习
OG one.Z3 小时前
01_机器学习初步
人工智能·机器学习
HyperAI超神经3 小时前
AI预判等离子体「暴走」,MIT等基于机器学习实现小样本下的等离子体动力学高精度预测
人工智能·神经网络·机器学习·ai·强化学习·可控核聚变·托卡马克
每天学一点儿3 小时前
感知机:单层,多层(二分类,多分类)
人工智能·算法
wan5555cn4 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
nju_spy4 小时前
华为AI岗 -- 笔试(一)
人工智能·深度学习·机器学习·华为·笔试·dbscan·掩码多头自注意力
LiJieNiub5 小时前
YOLO-V1 与 YOLO-V2 核心技术解析:目标检测的迭代突破
人工智能·yolo·目标检测