【深度学习】PyTorch 的发展历程 截止 2.1.0

PyTorch

  • PyTorch
      • [1. **PyTorch 0.x 系列**](#1. PyTorch 0.x 系列)
      • [2. **PyTorch 1.x 系列**](#2. PyTorch 1.x 系列)
      • [3. **PyTorch 2.x 系列**](#3. PyTorch 2.x 系列)
      • 发展趋势:
  • 写在最后

PyTorch

PyTorch 作为一个深度学习框架,经历了多个版本的迭代,带来了许多新特性、改进和优化。以下是 PyTorch 主要版本的发布历程以及关键更新:

1. PyTorch 0.x 系列

  • PyTorch 0.1.0 (2016年9月)

    PyTorch的初始发布版本,主要为学术研究而设计,提供了自动微分和动态计算图功能。

  • PyTorch 0.2.0 (2017年6月)

    引入 torch.onnx 支持,允许 PyTorch 模型导出为 ONNX 格式,增强了与其他框架的互操作性。

  • PyTorch 0.3.0 (2017年11月)

    提升了对分布式计算的支持,加入 CUDA 9 和 cuDNN 7 支持,改进了 RNN 性能。

  • PyTorch 0.4.0 (2018年4月24日)

    这是一个重大版本更新,合并了 TensorVariable,引入 torch.no_grad(),并移除了 volatile。这个版本标志着 PyTorch 走向更简洁和更高效的 API 设计。

2. PyTorch 1.x 系列

  • PyTorch 1.0.0 (2018年12月)

    这是一个重要里程碑版本,标志着 PyTorch 的正式成熟。1.0 版本引入了支持 C++ 前端的 JIT 编译器,提升了模型的生产部署能力。TorchScript 的引入使得模型在推理时的执行速度更快,也方便了跨平台部署。

  • PyTorch 1.1.0 (2019年5月)

    增加了新的分布式训练接口和强化的 JIT 功能,还改进了性能优化。

  • PyTorch 1.2.0 (2019年8月)

    提供了对更大模型和更复杂计算图的支持,增强了对 ONNX 的导出。

  • PyTorch 1.3.0 (2019年10月)

    引入了对量化(quantization)的支持,提升了模型在边缘设备上的性能。同时增加了 torchserve 用于模型服务。

  • PyTorch 1.4.0 (2020年1月)

    持续改进了量化训练支持,并改进了分布式训练中的 NCCL 后端。

  • PyTorch 1.5.0 (2020年4月)

    完善了混合精度训练(mixed-precision training)支持,还改进了 TorchScript 的性能。

  • PyTorch 1.6.0 (2020年8月)

    重点是加入了 AMP(Automatic Mixed Precision)功能,并改进了 profiling(性能分析)工具。

  • PyTorch 1.7.0 (2020年10月)

    弃用了 torch.nn.utils.clip_grad_norm,加强了对 ONNX 的支持,改进了深度学习调试工具,以及优化了性能分析器。

  • PyTorch 1.8.0 (2021年3月)

    加强了对移动设备和边缘计算的支持,引入了更高效的推理加速器。

  • PyTorch 1.9.0 (2021年6月)

    增加了对复杂数学运算的支持,扩展了 torch.special 模块,并改进了分布式训练和性能优化。

  • PyTorch 1.10.0 (2021年10月)

    进一步扩展了分布式训练支持,增加了 torch.compile() 用于动态编译模型。

  • PyTorch 1.11.0 (2022年3月)

    强化了量化支持,增加了对 PyTorch XLA 的优化,提升了在 TPU 上的性能。

3. PyTorch 2.x 系列

  • PyTorch 2.0.0 (2023年3月)

    引入了 TorchDynamo 和 TorchInductor,它们通过动态编译器提高了模型的推理速度。PyTorch 2.0 进一步提升了性能优化和编译能力,使得 PyTorch 在生产部署和性能上更具竞争力。

  • PyTorch 2.1.0 (2023年10月)

    提升了分布式训练、图优化,以及对边缘设备的支持,并引入了新的 API 和优化工具。

发展趋势:

随着 PyTorch 社区的发展,每个版本都在扩展分布式计算、优化推理性能、增强量化支持以及改进可扩展性方面进行更新,使得 PyTorch 能够满足从研究到生产部署的各种需求。

写在最后

本文采用了 ChatGPT 辅助进行内容的书写和完善

相关推荐
量子-Alex26 分钟前
【目标检测】【PANet】Path Aggregation Network for Instance Segmentation
人工智能·目标检测·计算机视觉
lihuayong28 分钟前
计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)
人工智能·yolo·目标检测·计算机视觉·目标跟踪·coco·数据标注
thinkMoreAndDoMore34 分钟前
深度学习(3)-TensorFlow入门(常数张量和变量)
开发语言·人工智能·python
神舟之光35 分钟前
动手学深度学习2025.2.23-预备知识之-线性代数
人工智能·深度学习·线性代数
wapicn991 小时前
‌挖数据平台对接DeepSeek推出一键云端部署功能:API接口驱动金融、汽车等行业智能化升级
java·人工智能·python·金融·汽车·php
不爱学习的YY酱1 小时前
MusicGPT的本地化部署与远程调用:让你的Windows电脑成为AI音乐工作站
人工智能·windows
kakaZhui1 小时前
【多模态大模型】端侧语音大模型minicpm-o:手机上的 GPT-4o 级多模态大模型
人工智能·chatgpt·aigc·llama
艾思科蓝 AiScholar1 小时前
【SPIE出版,见刊快速,EI检索稳定,浙江水利水电学院主办】2025年物理学与量子计算国际学术会议(ICPQC 2025)
图像处理·人工智能·信息可视化·自然语言处理·数据分析·力扣·量子计算
liruiqiang051 小时前
机器学习 - 衡量模型的特性
人工智能·机器学习
日记成书1 小时前
详细介绍嵌入式硬件设计
嵌入式硬件·深度学习·学习