RK3588人工智能学习笔记-WSL中使用RKNN-ToolKit2

RK3588人工智能学习笔记-WSL中使用RKNN-ToolKit2

  • [WSL 中 使用RKNN-ToolKit2](#WSL 中 使用RKNN-ToolKit2)
    • [1. Windows主机安装WSL](#1. Windows主机安装WSL)
    • [2. WSL 中使用RKNN-Toolkit2](#2. WSL 中使用RKNN-Toolkit2)
    • [3. WSL 中使用RKNN-Toolkit2进行连板调试](#3. WSL 中使用RKNN-Toolkit2进行连板调试)
      • [3.1. WSL 终端安装adb](#3.1. WSL 终端安装adb)
      • [3.2 WSL 连接设备](#3.2 WSL 连接设备)
        • [3.2.1 通过网线连接](#3.2.1 通过网线连接)
        • [3.2.2 通过USB连接](#3.2.2 通过USB连接)
      • [3.3 使用RKNN-ToolKit2进行连板调试](#3.3 使用RKNN-ToolKit2进行连板调试)
    • 注:

近期学习了一些与大语言模型有关的知识,不过每次都使用自己办公的电脑测试很不方便,又不想再花钱买算力,正好有2台备用的RK3588的设备,看了参数,也有6TOPS的算力。想尝试把它当作跑模型的服务器。学习过程中用到的一些知识,记录下来,方便后期查阅。

WSL 中 使用RKNN-ToolKit2

1. Windows主机安装WSL

2. WSL 中使用RKNN-Toolkit2

  1. 参考《Rockchip_RKNPU_Quick_Start手册》在 WSL 中安装RKNN-ToolKit2环境
  2. 参考《Rockchip_RKNPU_User_Guide手册》在 WSL 进行模型转换、量化等操作

3. WSL 中使用RKNN-Toolkit2进行连板调试

3.1. WSL 终端安装adb

复制代码
sudo apt update
sudo apt install adb

3.2 WSL 连接设备

可选择通过网线或USB进行设备连接

3.2.1 通过网线连接
复制代码
# 1. 使用网线连接设备

# 2. 在 WSL 中使用 adb connect 连接设备
adb connect <IP地址:端口号>

IP地址 为板子的IP地址

3.2.2 通过USB连接
复制代码
# 1. 在 Windows 上通过USB连接设备

# 2. 在 Windows 上使用adbkit工具,将USB转为TCP
npm install --save adbkit
adbkit usb-device-to-tcp <device_id> -p <端口号>

# 注:配置WSL可以访问Windows的网络

# 3. 在 WSL 中使用 adb connect 连接设备
adb connect <IP地址:端口号>
  • device_id可通过在Windows中使用adb devices命令查看 (需要Windows中已安装adb工具)
  • IP地址 为 Windows主机 的IP地址

3.3 使用RKNN-ToolKit2进行连板调试

参考《Rockchip_RKNPU_User_Guide手册》在 WSL 进行连板推理、连板精度分析等操作

注:

  1. 推荐安装 WSL2,Ubuntu版本号为22.04 已验证可行(其余版本未验证,理论可行)

  2. 在WSL使用RKNN-ToolKit2中若出现 "ImportError: libGL.so.1: cannot open shared object file: No such file or directory",请执行以下代码解决

    1. 安装对应库
      sudo apt update
      sudo apt install libgl1-mesa-glx

    2. 设置环境变量
      echo 'export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu/mesa' >> ~/.bashrc
      source ~/.bashrc

相关推荐
萤丰信息7 分钟前
AI 筑基・生态共荣:智慧园区的价值重构与未来新途
大数据·运维·人工智能·科技·智慧城市·智慧园区
(❁´◡`❁)Jimmy(❁´◡`❁)8 分钟前
Exgcd 学习笔记
笔记·学习·算法
傻小胖9 分钟前
21.ETH-权益证明-北大肖臻老师客堂笔记
笔记·区块链
盖雅工场12 分钟前
排班+成本双管控,餐饮零售精细化运营破局
人工智能·零售餐饮·ai智能排班
神策数据19 分钟前
打造 AI Growth Team: 以 Data + AI 重塑品牌零售增长范式
人工智能·零售
2501_9413331021 分钟前
数字识别与检测_YOLOv3_C3k2改进模型解析
人工智能·yolo·目标跟踪
逐梦苍穹29 分钟前
速通DeepSeek论文mHC:给大模型装上物理阀门的架构革命
人工智能·deepseek·mhc
运维小欣37 分钟前
Agentic AI 与 Agentic Ops 驱动,智能运维迈向新高度
运维·人工智能
云小逸1 小时前
【nmap源码学习】 Nmap网络扫描工具深度解析:从基础参数到核心扫描逻辑
网络·数据库·学习
Honmaple1 小时前
OpenClaw 迁移指南:如何把 AI 助手搬到新电脑
人工智能