GEO数据库提取疾病样本和正常样本|GEO数据库区分疾病和正常样本|直接用|生物信息|生信

GEO数据库提取疾病样本和正常样本|GEO数据库区分疾病和正常样本|直接用|生物信息|生信

代码都可以直接用,修改GSE就可以!

  1. 通过代码查看数据的分类,是疾病还是正常样本
R 复制代码
##############################查看对饮GSE样本疾病or正常信息

# 指定GEO数据集的ID
gse_id <- "GSE42568"

# 使用getGEO函数获取数据集的基础信息
gse_info <- getGEO(gse_id, destdir = ".", AnnotGPL = FALSE ,getGPL = F)


#提取临床信息 方法一:$或者@ ,配合str()观察结构
pdata = gse_info$GSE42568_series_matrix.txt.gz@phenoData@data
value_counts <- table(pdata$source_name_ch1)#这里可以改为查看pdata中区分疾病样本和正常样本的列名
value_counts
  1. 根据样本分类和下载处理好的数据进行数据划分,划分成正常和疾病
    我的数据格式如下图
R 复制代码
# 读取CSV文件
data <- read.csv("new_count_std.csv", row.names = 1)
#统一pdata读取的样本名和数据文件中的样本名
colnames(data) <- gsub("X\\.", "", colnames(data))   # 修改列名去掉 "X."
colnames(data) <- gsub("\\.$", "", colnames(data)) # 去掉最后的 "."

# 从source_name_ch1列中提取样本类型,我这里直接取了最后一个关键字,一般为normal,tumor,cancer这几类可以查看得到
pdata$last_word <- sapply(strsplit(as.character(pdata$source_name_ch1), " "), function(x) tail(x, 1))

# 根据样本类型划分数据
normal_samples <- rownames(pdata[pdata$last_word == "normal", ])#通过pdata$last_word 进行写关键字,不同的数据可能有不同的关键字,下面tumor的也是一样
normal_data <- data[, normal_samples]
tumor_samples <- rownames(pdata[pdata$last_word == "cancer", ])
tumor_data <- data[, tumor_samples]

# 保存划分后的CSV文件
write.csv(normal_data, "normal_matrix.csv", row.names = TRUE)
write.csv(tumor_data, "tumor_matrix.csv", row.names = TRUE)

这样保存的文件分别就是疾病样本和正常样本了~~~~~~~~有疑问欢迎询问!我会尽可能解答!!!!!!

相关推荐
学编程的闹钟1 分钟前
99【html与php的混写】
学习
-Springer-2 分钟前
STM32 学习 —— 个人学习笔记5(EXTI 外部中断 & 对射式红外传感器及旋转编码器计数)
笔记·stm32·学习
消失的旧时光-19433 分钟前
C++ 拷贝构造、拷贝赋值、移动构造、移动赋值 —— 四大对象语义完全梳理
开发语言·c++
AI_56784 分钟前
阿里云OSS成本优化:生命周期规则+分层存储省70%
运维·数据库·人工智能·ai
送秋三十五5 分钟前
一次大文件处理性能优化实录————Java 优化过程
java·开发语言·性能优化
choke2337 分钟前
软件测试任务测试
服务器·数据库·sqlserver
龙山云仓7 分钟前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
IT邦德8 分钟前
OEL9.7 安装 Oracle 26ai RAC
数据库·oracle
Sylvia-girl16 分钟前
线程池~~
java·开发语言
fie888917 分钟前
基于MATLAB的转子动力学建模与仿真实现(含碰摩、不平衡激励)
开发语言·算法·matlab