大语言模型超参数调优:开启 AI 潜能的钥匙

前言

在人工智能的广袤领域中,大语言模型(LLM)凭借其强大的实力,不断重塑着我们对机器理解语言的认知。然而,要使这些模型在特定应用场景中发挥最大效能,关键在于巧妙调整其超参数。本文将引领你深入探究 LLM 超参数的奥秘,揭示它们对模型表现的影响,并指导你如何通过精细调整,使模型输出更符合预期。现在,让我们一同揭开超参数调优的神秘面纱,释放 AI 模型的无限潜能。

超参数的价值

在选择最佳大语言模型时,需要考虑诸多因素。毋庸置疑,参数数量与模型大小密切相关,所以查看 LLM 的大小不失为明智之举。此外,还可以考察其在常见基准测试或推理性能测试(SOTA)中的表现,这些测试不仅能给出性能的量化指标,还能提供 LLM 之间相互衡量的尺度。

在选择看似最符合需求的 LLM 之后,还有其他途径可进一步塑造语言模型以满足特定需求,那就是超参数。实际上,超参数的选择与配置,可能是决定 LLM 表现优劣的关键所在。

超参数是什么

超参数(hyperparameters)是在学习过程开始前设定的参数,而非通过训练获得。换句话说,这些参数在训练开始前就需确定,它们会影响学习过程(即模型训练方式)以及模型性能(如准确性)。

超参数是一种配置项,可用于影响或控制 LLM 的训练过程。与模型参数或权重不同,超参数不会随训练数据的传递而改变;相反,它们是模型的外部设置,在训练开始前设定。尽管它们控制着 LLM 的训练过程,但不会成为最终基础模型的一部分,我们无法确定模型在训练时使用了哪些超参数。

LLM 的超参数至关重要,它提供了一种可控的方式来调整模型行为,以生成特定用例所需的结果。通过调整超参数来重新配置基础模型,使其符合我们的期望,而无需耗费大量精力和成本去开发定制模型。

超参数类别

1. 模型大小(Model Size)

首先要考虑的超参数是想要使用的 LLM 的大小。一般而言,更大的模型性能更优,能够处理复杂任务,因为其神经网络层数更多。这使其有更多权重可从训练数据中学习,并能更好地确定 token 之间的语言和逻辑关系。

然而,更大的 LLM 意味着更高的成本,需要更大的数据集进行训练以及更多的计算资源来运行,而且通常比小模型运行速度更慢。此外,模型越大越容易出现过拟合现象,即模型对训练数据过度熟悉,无法对未见过的数据进行一致的泛化。

相反,较小的基础 LLM 在简单任务上可能与较大的 LLM 表现相当,同时所需的训练和推理资源更少。特别是在模型被量化(使用压缩技术减少权重大小)或微调(使用额外数据进一步训练)的情况下。并且 LLM 越小越便于部署,在低配置 GPU 设备上更具可行性。

最终,LLM 的最佳尺寸取决于应用场景的性质。任务越复杂,可用的计算资源和训练数据越多,模型就可以越大。

2. 迭代次数(Number of Epochs)

一个周期(epoch)指的是 LLM 对整个数据集进行一次完整的迭代处理。作为超参数,设置的 epoch 数量通过影响模型的能力来作用于输出。

更多的 epoch 有助于模型增强对语言及其语义关系的理解。然而,过多的 epoch 可能导致过拟合,即模型对训练数据过度特化,在泛化能力上出现问题。相反,过少的 epoch 可能导致欠拟合,即大语言模型从训练数据中学习不足,无法正确配置其权重和偏置。

3. 学习率(Learning Rate)

学习率是一个基本的 LLM 超参数,它控制模型根据计算的损失函数进行快速更新的方式,即在训练过程中预测出错的输出标签的频率。一方面,较高的学习率可加快训练过程,但可能导致不稳定和过拟合。另一方面,较低的学习率可增强稳定性,并在推断过程中提高泛化能力,但会延长训练时间。

此外,在 LLM 训练过程中,使用学习率调度通常是有益的,即随着训练的进行降低学习率。基于时间衰减、步长衰减和指数衰减是最常见的三种学习率调度方式。

  • 基于时间衰减(Time-based decay):根据预设的时间值降低学习速率。
  • 阶梯衰减(Step decay):也称为线性衰减,每几个周期将学习率按衰减因子降低。
  • 指数衰减(Exponential decay):每个时期将学习率按比例降低。

4. 批大小(Batch Size)

LLM 的批大小参数决定了模型在每个 epoch 中处理的数据量。创建批大小需要将数据集分割成若干部分,因此较大的批大小相较于较小的批,可加速训练过程。然而,较小的批需要较少的内存和计算能力,并且能帮助 LLM 模型更深入地处理语料库中的每个数据点。考虑到计算需求,批大小通常会受到硬件能力的限制。

5. 最大输出 token(Max Output Tokens)

最大输出 token,也常被称为最大序列长度,是模型能够生成的输出 token 的最大值。虽然模型最终能够输出的 token 由其架构决定,但这可以进一步配置为超参数来影响回复的输出。

通常,最大输出 token 设置越高,模型的响应越连贯且与上下文相关。允许 LLM 在制定响应时使用更多输出 token,它就能更好地表达想法并全面地处理输入提示中的内容。然而,这需要付出代价------输出越长,模型进行的推理越多,从而增加了计算和内存需求。

相反,设置较低的最大 token 限制需要较少的处理能力和内存,但可能无法为模型提供足够的空间来生成最佳响应,从而导致不连贯和错误。在某些情况下,设置较低的最大序列长度是有好处的,例如:为了更好地控制推理成本;为了将生成的文本量限制在特定格式;当试图提升 LLM 的其他性能方面,如吞吐量或延迟,并希望通过缩短推理时间来加快进程时。

6. 解码类型(Decoding Type)

在构成大多数 LLM 的 Transformer 架构中,推理分为两个阶段:编码和解码。编码是将用户输入提示转换为向量嵌入的过程,即将文字转化为数字表示,以便模型生成最佳回答。解码是将选择的输出从向量嵌入转换为 token,然后作为回答呈现给用户。

解码主要有两种类型:贪婪和采样。在贪婪解码中,模型在推理过程的每一步都简单地选择概率最高的 token。采样解码则相反,模型选择潜在 token 的一个子集,然后随机选择一个 token 添加到输出文本中。这增加了想象力或随机性,是语言模型创意应用中的理想特性,但选择采样解码会增加响应错误和风险。

7. Top - k 和 Top - p 采样

如果选择采样解码而非贪婪解码,将有两个额外的超参数来影响模型的输出:Top - k 和 Top - p。

Top - k 采样值是一个 1 - 100 的整数(默认值为 50),它指定了模型采样的 token 应是具有最高概率的 token,直到达到设定值为止。

Top - p 采样值是一个 0.0 - 1.0 范围内的小数,用于配置模型在样本的最高概率之间进行采样,直到这些概率的总和达到设定值。

如果同时设置这两个采样,Top - k 是优先选项,所有超出阈值集合的概率都设为 0。

8. 温度(Temperature)

温度与上述 Top - k 和 Top - p 采样值类似,提供了一种改变可能输出 token 范围并影响模型"创造力"的方式。它由 0.0 - 2.0 之间的小数表示(0.0 实际上与贪婪解码相同,即按最高概率的 token 添加到输出;2.0 表示最大创造力)。

温度通过改变 token 概率分布的形状来影响输出。对于低设定值,概率之间的差异被放大,使得高概率的 token 相对于低概率的 token 更有可能被输出。因此,当希望模型生成更可预测或可靠的回应时,应设置较低的温度值。相比之下,高设定值会使 token 概率趋于接近,使不太可能或不寻常的 token 有更大的输出机会。鉴于此,当想要增加回复的随机性和创造力时,应设置较高的温度值。

9. 停止序列(Stop Sequences)

另一种影响 LLM 回复长度的方式是通过指定停止序列来自动停止模型输出。停止序列是由一个或多个字符组成的字符串。常见的停止序列示例是句号(. / 。)。

另外,可以通过设置停止标记限制来指定序列的结束,这个限制是一个整数值,而非字符串。例如,如果将停止标记限制设置为 1,生成的输出将停在一个句子;如果设置为 2,回应将被限制在一个段落内。出于预算考虑,设置停止序列或停止 token 可以更好地控制推断过程。

10. 频率和存在惩罚(Frequency and Presence Penalties)

频率惩罚,也称为重复惩罚,是一个 - 2.0 - 2.0 之间的小数,它告诉模型应避免过于频繁地使用相同的 token。它通过降低最近添加到响应中的 token 概率来发挥作用,以减少重复使用,从而产生更多样化的输出。

存在惩罚与之类似,但仅适用于至少使用过一次的 token,而频率惩罚是按照特定 token 的使用频率成比例应用的。换句话说,频率惩罚通过防止重复来影响输出,而存在惩罚则鼓励使用更广泛的 token。

超参数调优

超参数调优是在训练过程中调整不同超参数的过程,目标是找到能产生最优输出的组合。然而,这不可避免地涉及大量的试错,需要精确跟踪每个超参数的应用,并记录输出的相应结果。因此,手动执行此过程非常耗时。针对这个问题,自动化超参数调优方法应运而生,极大地简化了这一过程。

自动超参数调整的三种最常见方法是随机搜索、网格搜索和贝叶斯优化。

1. 随机搜索

随机搜索方法从一定范围内随机选择并评估超参数组合,是一种简单高效的方法,能够遍历大量的参数空间。然而,由于其简单性,它会牺牲一定的性能,可能无法找到最优的超参数组合,同时也会占用较多的计算资源。

2. 网格搜索

与随机搜索相反,该方法穷举搜索数值范围内的每个可能的超参数组合。虽然与随机搜索一样资源密集,但它提供了一种更系统化的方式,确保找到超参数的最佳选择。

3. 贝叶斯优化

与上述两种方法不同,它采用概率模型来预测不同超参数的性能,并选择最佳超参数以获得更好的响应。这使其成为一种高效的调优方法,既能更好地处理大型参数空间,又比网格搜索需要更少的资源。但其缺点是设置更复杂,在识别最佳超参数集方面效果不如网格搜索。

自动化超参数调整的另一个优势是可以开发多个语言模型,使每个模型具有不同的超参数组合。通过在相同的数据集上对它们进行训练,并比较它们的输出,确定最佳用例。同样,调整了不同超参数和值范围的每个模型可能更适合不同的用例。

结语

通过深入分析,我们明白超参数调优不仅是一项技术活动,更是一门艺术。它要求我们对模型有深刻的理解,对数据有敏锐的洞察,对目标有清晰的认识。每一次超参数的调整,都像是与模型进行一场精心设计的对话,旨在引导它更好地服务于我们的愿景。记住,没有一成不变的最佳配置,只有不断探索和适应的最优解。让我们以这篇文章为起点,在 AI 的征途上继续寻找那些能够点亮智慧之光的超参数组合。

大模型资源分享

针对所有自学遇到困难的同学,我为大家系统梳理了大模型学习的脉络,并且分享这份LLM大模型资料:其中包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等。😝有需要的小伙伴,可以扫描下方二维码免费领取↓↓↓

一、全套 AGI 大模型学习路线

AI 大模型时代的精彩学习之旅:从根基铸就到前沿探索,牢牢掌握人工智能核心技能!

二、640 套 AI 大模型报告合集

此套涵盖 640 份报告的精彩合集,全面涉及 AI 大模型的理论研究、技术实现以及行业应用等诸多方面。无论你是科研工作者、工程师,还是对 AI 大模型满怀热忱的爱好者,这套报告合集都将为你呈上宝贵的信息与深刻的启示。

三、AI 大模型经典 PDF 书籍

伴随人工智能技术的迅猛发展,AI 大模型已然成为当今科技领域的一大热点。这些大型预训练模型,诸如 GPT-3、BERT、XLNet 等,凭借其强大的语言理解与生成能力,正在重塑我们对人工智能的认知。而以下这些 PDF 书籍无疑是极为出色的学习资源。

阶段 1:AI 大模型时代的基础认知

  • 目标:深入洞悉 AI 大模型的基本概念、发展历程以及核心原理。

  • 内容

    • L1.1 人工智能概述与大模型起源探寻。
    • L1.2 大模型与通用人工智能的紧密关联。
    • L1.3 GPT 模型的辉煌发展历程。
    • L1.4 模型工程解析。
    • L1.4.1 知识大模型阐释。
    • L1.4.2 生产大模型剖析。
    • L1.4.3 模型工程方法论阐述。
    • L1.4.4 模型工程实践展示。
    • L1.5 GPT 应用案例分享。

阶段 2:AI 大模型 API 应用开发工程

  • 目标:熟练掌握 AI 大模型 API 的运用与开发,以及相关编程技能。

  • 内容

    • L2.1 API 接口详解。
    • L2.1.1 OpenAI API 接口解读。
    • L2.1.2 Python 接口接入指南。
    • L2.1.3 BOT 工具类框架介绍。
    • L2.1.4 代码示例呈现。
    • L2.2 Prompt 框架阐释。
    • L2.2.1 何为 Prompt。
    • L2.2.2 Prompt 框架应用现状分析。
    • L2.2.3 基于 GPTAS 的 Prompt 框架剖析。
    • L2.2.4 Prompt 框架与 Thought 的关联探讨。
    • L2.2.5 Prompt 框架与提示词的深入解读。
    • L2.3 流水线工程阐述。
    • L2.3.1 流水线工程的概念解析。
    • L2.3.2 流水线工程的优势展现。
    • L2.3.3 流水线工程的应用场景探索。
    • L2.4 总结与展望。

阶段 3:AI 大模型应用架构实践

  • 目标:深刻理解 AI 大模型的应用架构,并能够实现私有化部署。

  • 内容

    • L3.1 Agent 模型框架解读。
    • L3.1.1 Agent 模型框架的设计理念阐述。
    • L3.1.2 Agent 模型框架的核心组件剖析。
    • L3.1.3 Agent 模型框架的实现细节展示。
    • L3.2 MetaGPT 详解。
    • L3.2.1 MetaGPT 的基本概念阐释。
    • L3.2.2 MetaGPT 的工作原理剖析。
    • L3.2.3 MetaGPT 的应用场景探讨。
    • L3.3 ChatGLM 解析。
    • L3.3.1 ChatGLM 的特色呈现。
    • L3.3.2 ChatGLM 的开发环境介绍。
    • L3.3.3 ChatGLM 的使用示例展示。
    • L3.4 LLAMA 阐释。
    • L3.4.1 LLAMA 的特点剖析。
    • L3.4.2 LLAMA 的开发环境说明。
    • L3.4.3 LLAMA 的使用示例呈现。
    • L3.5 其他大模型介绍。

阶段 4:AI 大模型私有化部署

  • 目标:熟练掌握多种 AI 大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述。
    • L4.2 模型私有化部署的关键技术解析。
    • L4.3 模型私有化部署的实施步骤详解。
    • L4.4 模型私有化部署的应用场景探讨。

学习计划:

  • 阶段 1:历时 1 至 2 个月,构建起 AI 大模型的基础知识体系。
  • 阶段 2:花费 2 至 3 个月,专注于提升 API 应用开发能力。
  • 阶段 3:用 3 至 4 个月,深入实践 AI 大模型的应用架构与私有化部署。
  • 阶段 4 :历经 4 至 5 个月,专注于高级模型的应用与部署。
相关推荐
weixin_437497776 小时前
读书笔记:Context Engineering 2.0 (上)
人工智能·nlp
喝拿铁写前端6 小时前
前端开发者使用 AI 的能力层级——从表面使用到工程化能力的真正分水岭
前端·人工智能·程序员
goodfat6 小时前
Win11如何关闭自动更新 Win11暂停系统更新的设置方法【教程】
人工智能·禁止windows更新·win11优化工具
北京领雁科技6 小时前
领雁科技反洗钱案例白皮书暨人工智能在反洗钱系统中的深度应用
人工智能·科技·安全
落叶,听雪6 小时前
河南建站系统哪个好
大数据·人工智能·python
清月电子7 小时前
杰理AC109N系列AC1082 AC1074 AC1090 芯片停产替代及资料说明
人工智能·单片机·嵌入式硬件·物联网
Dev7z7 小时前
非线性MPC在自动驾驶路径跟踪与避障控制中的应用及Matlab实现
人工智能·matlab·自动驾驶
七月shi人7 小时前
AI浪潮下,前端路在何方
前端·人工智能·ai编程
橙汁味的风7 小时前
1隐马尔科夫模型HMM与条件随机场CRF
人工智能·深度学习·机器学习
itwangyang5207 小时前
AIDD-人工智能药物设计-AI 制药编码之战:预测癌症反应,选对方法是关键
人工智能