【machine learning-七-线性回归之成本函数】

监督学习之cost function

在线性回归中,我们说到评估模型训练中好坏的一个方法,是用成本函数来衡量,下面来详细介绍一下

成本函数

权重、偏置

在线性回归( https://blog.csdn.net/zishuijing_dd/article/details/142131936?spm=1001.2014.3001.5501)一节中,我们要实现的线性模型就是要找出输入x和y的映射关系,这种映射关系可以被表示为y = wx + b,其中需要被确定的两个值,w被称做权重,b被称做偏置。

假设样本数据和拟合的直线如下图:

那么w实际是斜率,b就是截距。样本中的数据用(x(i),y(i))表示,样本中的y值是真实值,通常用y_label标记,而拟合的y = wx + b 线性模型,输入x(i)计算得出的y_predict 被称为预测值。
训练的目标就是让y_predict更接近于y_label,也就是称为更拟合

如何实现拟合数据

方法就是使用成本函数 ,这是一种评估y_predict和y_label的差值(误差)的方法,通常用的成本函数是样本数据误差的平方和,也就是(y_predict-y_label)2的和,当然为了防止误差无限变大,我们使用均值,也就是再除上样本个数,整体的公式如下:

注意一下,这个除了2倍的样本数,主要是为了后面计算简单,y_predict是函数f(w,b)的输出,所以公式最终成了上述样式。

这个误差计算方式就叫做均方误差成本函数。

所以实际上我们训练函数的目标就是,寻找合适的w和b让这个成本函数的值更小

不同的应用经常会选用不同的成本函数,但是平方误差几乎是线性回归的必选,在很多应用上的效果都不错。

成本函数是如何寻找出来w和b,使成本函数值最小化?

为了简化计算,以下面情况为例:

假设样本数据为(1,1),(2,2),(3,3)

偏置b 为0

我们的回归函数就是关于输入x的一个函数 ,所以它的横轴是x,如下图所示:

当w取不同值的时候,我们来计算成本函数:

注意一点J是关于w的函数 ,当w 为1的时候,按照公式计算成本函数J:

通过计算,我们知道当w为1的时候,成本函数的结果为0

然后我们依次计算w为0.5,1.5等的时候,成本函数的结果,然后可视化画出成本函数的线:

10412c9d14268716fdea40.png)

通过对成本函数的观察,我们会找到一些w,使得成本函数尽量的小。这些w就是最终的w。

至此我们就找到了合适的w,当然b也是同样的方式。

相关推荐
py有趣9 小时前
LeetCode算法学习之两数之和 II - 输入有序数组
学习·算法·leetcode
夏鹏今天学习了吗9 小时前
【LeetCode热题100(62/100)】搜索二维矩阵
算法·leetcode·矩阵
吃着火锅x唱着歌11 小时前
LeetCode 1128.等价多米诺骨牌对的数量
算法·leetcode·职场和发展
十八岁讨厌编程11 小时前
【算法训练营 · 补充】LeetCode Hot100(中)
算法·leetcode
橘颂TA11 小时前
【剑斩OFFER】算法的暴力美学——最小覆盖字串
算法·c/c++·就业
wearegogog12311 小时前
基于混合蛙跳算法和漏桶算法的无线传感器网络拥塞控制与分簇新方法
网络·算法
Tiandaren12 小时前
大模型应用03 || 函数调用 Function Calling || 概念、思想、流程
人工智能·算法·microsoft·数据分析
2301_7951672013 小时前
玩转Rust高级应用 如何进行理解Refutability(可反驳性): 模式是否会匹配失效
开发语言·算法·rust
小当家.10513 小时前
[LeetCode]Hot100系列.贪心总结+思想总结
算法·leetcode·职场和发展
墨雪不会编程13 小时前
数据结构—排序算法篇二
数据结构·算法·排序算法