【machine learning-12-多元线性回归】

线性回归-多特征

之前节的线性回归为简化都是用的单特征,但现实中我们的预测因素很复杂不可能只有一个特征,下面总结多特征线性回归

多特征

之前总是用房价举例,预测房价和房屋面积的关系:

f(x) = wx + b , x表示其中的面积这个特征,这就是单特征

但是实际上,房价的影响因素是很多的,比如卧室个数、层数、房屋的年龄等等,真实的应用都是多特征的:

注意后续用下面的标识符表示第i条数据的第j个特征:

线性回归多特征表示

多特征表示如下:

其中xj为其中的单个特征,举个例子:

f(x) = 0.1* x1 + 50* x2 + ... + 70 ,一种可以解释的就是基础房价为70,每增加1英尺,房价增加0.1,每多一个我是,房价多涨50...

更简单的多元线性回归表示方法

多特征线性回归更简单和通用的表示方法是:向量点乘法,至于是什么向量,可以暂时理解为一个list,list中的每个元素都是特征,如下表示就简化成:

z这个公式中 w 和 x都是向量 ,w 和 x是如下向量:

而公式中的 ,表示点乘,点乘是逐项相乘然后相加,所以这个向量点乘的表示方法,与文章开始逐项相加的表示结果是一样的,它的优势会在向量化中详细介绍。

相关推荐
人生在勤,不索何获-白大侠7 分钟前
day15——Java常用API(二):常见算法、正则表达式与异常处理详解
java·算法·正则表达式
FF-Studio18 分钟前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
张德锋24 分钟前
Pytorch实现CIFAR10彩色图片识别
机器学习
Wo3Shi4七42 分钟前
双向队列
数据结构·算法·go
Wo3Shi4七1 小时前
列表
数据结构·算法·go
Wo3Shi4七1 小时前
链表
数据结构·算法·go
Wo3Shi4七1 小时前
数组
数据结构·算法·go
CoovallyAIHub1 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
转转技术团队2 小时前
边学边做:图片识别技术的学习与应用
后端·算法
一块plus2 小时前
2025 年值得一玩的最佳 Web3 游戏
算法·设计模式·程序员