在线教程丨1 步生成 SOTA 级别图像,Hyper-SD 一键启动教程上线!

近年来,扩散模型在文生图任务中得到了广泛的应用,但其在实现高质量图像生成的过程中,通常需要多步推理进行去噪,这显然大大增加了计算资源成本。

针对于此,研究人员引入蒸馏算法,推出了扩撒感知蒸馏算法来加速扩散模型的推理过程。目前常用的方法大致可分为轨迹保持蒸馏与轨迹重构蒸馏,但均存在严重的性能下降与领域偏移。

为此,字节跳动提出了名为 Hyper-SD 的创新框架,扬长避短,结合上述两种方法的优势,在压缩去噪步数的同时保持接近无损的性能,通过轨迹分段一致性蒸馏 (Trajectory Segmented Consistency Distillation, TSCD) 技术,实现了快速且高质量的图像生成。

广泛的实验和用户研究表明,Hyper-SD 在 SDXL 和 SD1.5 两种架构上,都能在 1 到 8 步生成中实现 SOTA 级别的图像生成性能。

「Hyper-SD 实时绘画生图」已上线至 HyperAI超神经教程版块,无需输入任何命令,一键克隆即可启动!

教程地址:

https://go.hyper.ai/bQ3fh

Demo 运行

  1. 登录 hyper.ai,在「教程」页面,选择「Hyper-SD 实时绘画生图」,点击「在线运行此教程」。

  2. 页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。

  3. 点击右下角「下一步:选择算力」。

  4. 页面跳转后,选择「NVIDIA RTX 4090」以及 「PyTorch」镜像,点击「下一步:审核」。新用户使用下方邀请链接注册,可获得 4 小时 RTX 4090 + 5 小时 CPU 的免费时长!

HyperAI超神经专属邀请链接(直接复制到浏览器打开):

https://openbayes.com/console/signup?r=6bJ0ljLFsFh_Vvej

  1. 确认无误后,点击「继续执行」,等待分配资源,首次克隆需等待 1 分钟左右的时间。当状态变为「运行中」后,点击「API 地址」边上的跳转箭头,即可跳转至 Demo 页面。请注意,用户需在实名认证后才能使用 API 地址访问功能。


效果预览

  1. 打开 Demo 后,在绘图区简单画出形状后,输入 Prompt(例如 Lighthouse on the sea),点击「run」,即可产出图像。

  2. 继续添加不同的笔画,可以看到它根据新的笔画实时更换不同的图片。

相关推荐
机器之心15 分钟前
VAE时代终结?谢赛宁团队「RAE」登场,表征自编码器或成DiT训练新基石
人工智能·openai
机器之心17 分钟前
Sutton判定「LLM是死胡同」后,新访谈揭示AI困境
人工智能·openai
大模型真好玩20 分钟前
低代码Agent开发框架使用指南(四)—Coze大模型和插件参数配置最佳实践
人工智能·agent·coze
jerryinwuhan20 分钟前
基于大语言模型(LLM)的城市时间、空间与情感交织分析:面向智能城市的情感动态预测与空间优化
人工智能·语言模型·自然语言处理
落雪财神意34 分钟前
股指10月想法
大数据·人工智能·金融·区块链·期股
中杯可乐多加冰35 分钟前
无代码开发实践|基于业务流能力快速开发市场监管系统,实现投诉处理快速响应
人工智能·低代码
渣渣盟36 分钟前
解密NLP:从入门到精通
人工智能·python·nlp
新智元37 分钟前
万亿级思考模型,蚂蚁首次开源!20 万亿 token 搅局开源 AI
人工智能·openai
算家计算42 分钟前
阿里开源最强视觉模型家族轻量版:仅4B/8B参数,性能逼近72B旗舰版
人工智能·开源·资讯
MarkHD1 小时前
Dify从入门到精通 第16天 工作流进阶 - 分支与判断:构建智能路由客服机器人
人工智能·机器人