在线教程丨1 步生成 SOTA 级别图像,Hyper-SD 一键启动教程上线!

近年来,扩散模型在文生图任务中得到了广泛的应用,但其在实现高质量图像生成的过程中,通常需要多步推理进行去噪,这显然大大增加了计算资源成本。

针对于此,研究人员引入蒸馏算法,推出了扩撒感知蒸馏算法来加速扩散模型的推理过程。目前常用的方法大致可分为轨迹保持蒸馏与轨迹重构蒸馏,但均存在严重的性能下降与领域偏移。

为此,字节跳动提出了名为 Hyper-SD 的创新框架,扬长避短,结合上述两种方法的优势,在压缩去噪步数的同时保持接近无损的性能,通过轨迹分段一致性蒸馏 (Trajectory Segmented Consistency Distillation, TSCD) 技术,实现了快速且高质量的图像生成。

广泛的实验和用户研究表明,Hyper-SD 在 SDXL 和 SD1.5 两种架构上,都能在 1 到 8 步生成中实现 SOTA 级别的图像生成性能。

「Hyper-SD 实时绘画生图」已上线至 HyperAI超神经教程版块,无需输入任何命令,一键克隆即可启动!

教程地址:

https://go.hyper.ai/bQ3fh

Demo 运行

  1. 登录 hyper.ai,在「教程」页面,选择「Hyper-SD 实时绘画生图」,点击「在线运行此教程」。

  2. 页面跳转后,点击右上角「克隆」,将该教程克隆至自己的容器中。

  3. 点击右下角「下一步:选择算力」。

  4. 页面跳转后,选择「NVIDIA RTX 4090」以及 「PyTorch」镜像,点击「下一步:审核」。新用户使用下方邀请链接注册,可获得 4 小时 RTX 4090 + 5 小时 CPU 的免费时长!

HyperAI超神经专属邀请链接(直接复制到浏览器打开):

https://openbayes.com/console/signup?r=6bJ0ljLFsFh_Vvej

  1. 确认无误后,点击「继续执行」,等待分配资源,首次克隆需等待 1 分钟左右的时间。当状态变为「运行中」后,点击「API 地址」边上的跳转箭头,即可跳转至 Demo 页面。请注意,用户需在实名认证后才能使用 API 地址访问功能。


效果预览

  1. 打开 Demo 后,在绘图区简单画出形状后,输入 Prompt(例如 Lighthouse on the sea),点击「run」,即可产出图像。

  2. 继续添加不同的笔画,可以看到它根据新的笔画实时更换不同的图片。

相关推荐
JoannaJuanCV15 分钟前
自动驾驶—CARLA仿真(6)vehicle_gallery demo
人工智能·机器学习·自动驾驶·carla
Hundred billion29 分钟前
深度学习基本原理和流程
人工智能·深度学习
周杰伦_Jay31 分钟前
【大模型数据标注】核心技术与优秀开源框架
人工智能·机器学习·eureka·开源·github
Jay200211133 分钟前
【机器学习】33 强化学习 - 连续状态空间(DQN算法)
人工智能·算法·机器学习
Learn Forever41 分钟前
由ChatGPT 的记忆系统谈及如何构建一个对话应用智能体
人工智能
资深低代码开发平台专家1 小时前
GPT-5.2与Gemini 3.0终极抉择:谁更适配你的需求?
人工智能·gpt·ai
得贤招聘官1 小时前
AI招聘的核心破局:从“流程装饰”到“决策引擎”
人工智能
一水鉴天1 小时前
整体设计 定稿 之26 重构和改造现有程序结构 之2 (codebuddy)
开发语言·人工智能·重构·架构
cici158741 小时前
二值化断裂裂缝的智能拼接算法
人工智能·算法·计算机视觉
裤裤兔2 小时前
医学影像深度学习知识点总结
人工智能·深度学习·机器学习·医学影像·医学图像