使用随机森林模型在digits数据集上执行分类任务

程序功能

使用随机森林模型对digits数据集进行手写数字分类任务。具体步骤如下:

加载数据:从digits数据集中获取手写数字图片的特征和对应的标签。

划分数据:将数据集分为训练集和测试集,测试集占30%。

训练模型:使用随机森林算法训练分类模型。

进行预测:使用训练好的模型对测试集进行预测。

评估模型:输出模型的分类准确率和详细的分类报告,评估模型的分类效果。

代码

python 复制代码
# 导入所需的库
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report

# 加载digits数据集
digits = load_digits()
X = digits.data  # 特征
y = digits.target  # 标签

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建随机森林分类器
clf = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
clf.fit(X_train, y_train)

# 预测测试集
y_pred = clf.predict(X_test)

# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy:.2f}")

# 打印分类报告
print("分类报告:")
print(classification_report(y_test, y_pred, target_names=digits.target_names.astype(str)))
相关推荐
一只鱼^_25 分钟前
牛客周赛 Round 105
数据结构·c++·算法·均值算法·逻辑回归·动态规划·启发式算法
是阿建吖!26 分钟前
【动态规划】斐波那契数列模型
算法·动态规划
啊阿狸不会拉杆1 小时前
《算法导论》第 27 章 - 多线程算法
java·jvm·c++·算法·图论
火车叨位去19491 小时前
力扣top100(day04-05)--堆
算法·leetcode·职场和发展
数据智能老司机1 小时前
面向企业的图学习扩展——面向图的传统机器学习
算法·机器学习
类球状1 小时前
顺序表 —— OJ题
算法
Miraitowa_cheems2 小时前
LeetCode算法日记 - Day 11: 寻找峰值、山脉数组的峰顶索引
java·算法·leetcode
CoovallyAIHub2 小时前
方案 | 动车底部零部件检测实时流水线检测算法改进
深度学习·算法·计算机视觉
CoovallyAIHub2 小时前
方案 | 光伏清洁机器人系统详细技术实施方案
深度学习·算法·计算机视觉
lxmyzzs2 小时前
【图像算法 - 14】精准识别路面墙体裂缝:基于YOLO12与OpenCV的实例分割智能检测实战(附完整代码)
人工智能·opencv·算法·计算机视觉·裂缝检测·yolo12