图说GPT网络结构(参数量与计算量估计)

现在AI领域的主流模型几乎都是Transformer网络架构衍生而来。大热的LLM中的生成类模型很多都是来自于Transformer的变体,即decoder only架构。而GPT就是该类中的经典模型。尽管现在变体甚多,但大多没有根本性地改变其套路。

为了阐述方便,首先约定一些符号:

符号 含义
b Batch size
L Transformer layer层数
s Sequence length
n Attention head个数
h Hidden size,或embedding dim
d 每个head的hidden size,与前两者有关系 h = n d h = n d h=nd
V Vocabulary size
P 最大sequence length

在模型的优化时,我们经常需要一些信息,诸如特定配置的模型计算需要多少compute与memory资源,计算与数据传输大概需要多长时间等。这就要求我们对网络中的一些量(如参数量,计算量,内存使用量等)进行一些粗略估计。基于这些估计,还可以得到这些量之间的大致关系。如一个transformer layer的参数量约为 12 h 2 + 13 h 12 h ^ 2 + 13 h 12h2+13h,计算量约为 24 b s h 2 + 4 b h s 2 24 b s h^2 + 4 b h s^2 24bsh2+4bhs2。这意味着,在 h h h远大于 s s s的情况下,计算量与参数量大约是两倍关系。而Backward的计算量又约是Forward计算量的两倍(因需要对输入与权重都计算梯度)。由于transformer layer是网络中参数量(除embedding外)与计算量的主要贡献者。因此,计算量与除embedding外参数量之间有那个著名的公式 C ≈ 6 N C \approx 6 N C≈6N。

但是,诸如这些都是general的结论。实际使用时,我们会碰到各种网络变体,各种配置或各种跑法,另外还可能需要回答一些更细节具体的问题,比如KV Cache节省了多少计算量,需要额外占用多少memory,把某层分布式计算需要增加多少通信量,或者MQA/GQA相比传统的MHA可以节省多少memory等等。而只有了解了那些估计是怎么来的,才能够更加灵活地运用。

下面以经典的GPT2模型为例,在其网络结构上标注了各操作的shape,并进行参数量和计算量估计。

Prefill阶段:

Generation阶段:

相关推荐
猫头虎2 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
北京地铁1号线5 小时前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
小爷毛毛_卓寿杰6 小时前
突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解
人工智能·llm
磊叔的技术博客7 小时前
LLM 系列(六):模型推理篇
人工智能·面试·llm
ResponsibilityAmbiti14 小时前
AI 发展 && MCP
人工智能·llm·aigc
AI大模型14 小时前
LangGraph官方文档笔记(6)——时间旅行
程序员·langchain·llm
CoderLiu1 天前
用这个MCP,只给大模型一个figma链接就能直接导出图片,还能自动压缩上传?
前端·llm·mcp
智泊AI1 天前
大语言模型LLM底层技术原理到底是什么?大型语言模型如何工作?
llm
moonless02221 天前
🌈Transformer说人话版(二)位置编码 【持续更新ing】
人工智能·llm
小爷毛毛_卓寿杰1 天前
基于大模型与知识图谱的对话引导意图澄清系统技术解析
人工智能·llm