图说GPT网络结构(参数量与计算量估计)

现在AI领域的主流模型几乎都是Transformer网络架构衍生而来。大热的LLM中的生成类模型很多都是来自于Transformer的变体,即decoder only架构。而GPT就是该类中的经典模型。尽管现在变体甚多,但大多没有根本性地改变其套路。

为了阐述方便,首先约定一些符号:

符号 含义
b Batch size
L Transformer layer层数
s Sequence length
n Attention head个数
h Hidden size,或embedding dim
d 每个head的hidden size,与前两者有关系 h = n d h = n d h=nd
V Vocabulary size
P 最大sequence length

在模型的优化时,我们经常需要一些信息,诸如特定配置的模型计算需要多少compute与memory资源,计算与数据传输大概需要多长时间等。这就要求我们对网络中的一些量(如参数量,计算量,内存使用量等)进行一些粗略估计。基于这些估计,还可以得到这些量之间的大致关系。如一个transformer layer的参数量约为 12 h 2 + 13 h 12 h ^ 2 + 13 h 12h2+13h,计算量约为 24 b s h 2 + 4 b h s 2 24 b s h^2 + 4 b h s^2 24bsh2+4bhs2。这意味着,在 h h h远大于 s s s的情况下,计算量与参数量大约是两倍关系。而Backward的计算量又约是Forward计算量的两倍(因需要对输入与权重都计算梯度)。由于transformer layer是网络中参数量(除embedding外)与计算量的主要贡献者。因此,计算量与除embedding外参数量之间有那个著名的公式 C ≈ 6 N C \approx 6 N C≈6N。

但是,诸如这些都是general的结论。实际使用时,我们会碰到各种网络变体,各种配置或各种跑法,另外还可能需要回答一些更细节具体的问题,比如KV Cache节省了多少计算量,需要额外占用多少memory,把某层分布式计算需要增加多少通信量,或者MQA/GQA相比传统的MHA可以节省多少memory等等。而只有了解了那些估计是怎么来的,才能够更加灵活地运用。

下面以经典的GPT2模型为例,在其网络结构上标注了各操作的shape,并进行参数量和计算量估计。

Prefill阶段:

Generation阶段:

相关推荐
沛沛老爹14 小时前
Web开发者5分钟上手:Agent Skills环境搭建与基础使用实战
java·人工智能·llm·llama·rag·agent skills
向量引擎15 小时前
【万字硬核】解密GPT-5.2-Pro与Sora2底层架构:从Transformer到世界模型,手撸一个高并发AI中台(附Python源码+压测报告)
人工智能·gpt·ai·aigc·ai编程·ai写作·api调用
bl4ckpe4ch18 小时前
LLM提示词,究极提高效率【WIP】
llm·大语言模型·提示词工程·llm提示词
irises21 小时前
开源项目next-ai-draw-io核心能力拆解
前端·后端·llm
irises21 小时前
通过`ai.js`与`@ai-sdk`实现前后端tool注入与交互
前端·后端·llm
課代表21 小时前
大语言模型能够理解的11种文件格式
人工智能·语言模型·自然语言处理·llm·markdown·token·模型
程序员佳佳1 天前
【万字硬核】从GPT-5.2到Sora2:深度解构多模态大模型的“物理直觉”与Python全栈落地指南(内含Banana2实测)
开发语言·python·gpt·chatgpt·ai作画·aigc·api
智泊AI1 天前
一文讲清:主流大模型推理部署框架:vLLM、SGLang、TensorRT-LLM、ollama、XInference
llm
大霸王龙1 天前
MinIO 对象存储系统架构图集
人工智能·llm·minio
MoonOut1 天前
LLM | ARC-AGI:有趣的 benchmark
llm