图说GPT网络结构(参数量与计算量估计)

现在AI领域的主流模型几乎都是Transformer网络架构衍生而来。大热的LLM中的生成类模型很多都是来自于Transformer的变体,即decoder only架构。而GPT就是该类中的经典模型。尽管现在变体甚多,但大多没有根本性地改变其套路。

为了阐述方便,首先约定一些符号:

符号 含义
b Batch size
L Transformer layer层数
s Sequence length
n Attention head个数
h Hidden size,或embedding dim
d 每个head的hidden size,与前两者有关系 h = n d h = n d h=nd
V Vocabulary size
P 最大sequence length

在模型的优化时,我们经常需要一些信息,诸如特定配置的模型计算需要多少compute与memory资源,计算与数据传输大概需要多长时间等。这就要求我们对网络中的一些量(如参数量,计算量,内存使用量等)进行一些粗略估计。基于这些估计,还可以得到这些量之间的大致关系。如一个transformer layer的参数量约为 12 h 2 + 13 h 12 h ^ 2 + 13 h 12h2+13h,计算量约为 24 b s h 2 + 4 b h s 2 24 b s h^2 + 4 b h s^2 24bsh2+4bhs2。这意味着,在 h h h远大于 s s s的情况下,计算量与参数量大约是两倍关系。而Backward的计算量又约是Forward计算量的两倍(因需要对输入与权重都计算梯度)。由于transformer layer是网络中参数量(除embedding外)与计算量的主要贡献者。因此,计算量与除embedding外参数量之间有那个著名的公式 C ≈ 6 N C \approx 6 N C≈6N。

但是,诸如这些都是general的结论。实际使用时,我们会碰到各种网络变体,各种配置或各种跑法,另外还可能需要回答一些更细节具体的问题,比如KV Cache节省了多少计算量,需要额外占用多少memory,把某层分布式计算需要增加多少通信量,或者MQA/GQA相比传统的MHA可以节省多少memory等等。而只有了解了那些估计是怎么来的,才能够更加灵活地运用。

下面以经典的GPT2模型为例,在其网络结构上标注了各操作的shape,并进行参数量和计算量估计。

Prefill阶段:

Generation阶段:

相关推荐
EdisonZhou37 分钟前
MAF快速入门(8)条件路由工作流
llm·aigc·agent·.net core
暴风鱼划水40 分钟前
大型语言模型(入门篇)B
人工智能·语言模型·大模型·llm
xhxxx1 小时前
别再让 AI 自由发挥了!用 LangChain + Zod 强制它输出合法 JSON
前端·langchain·llm
智泊AI6 小时前
AI Agent(智能体)如何构建?什么时候该用?有哪些模式?
llm
大模型教程7 小时前
大模型LLM入门篇:小白入门一文快速了解大模型(附教程)
langchain·llm·agent
Robot侠8 小时前
给自己做一个 ChatGPT:基于 Gradio 的本地 LLM 网页对话界面
人工智能·chatgpt·llm·llama·qwen·gradio
用户12039112947268 小时前
从零上手 LangChain:用 JavaScript 打造强大 AI 应用的全流程指南
javascript·langchain·llm
坐吃山猪8 小时前
Google的A2A智能体群聊
python·llm·a2a
AI大模型9 小时前
别再被割韭菜!真正免费的Prompt学习路径,0基础也能抄
程序员·llm·agent