OpenCV运动分析和目标跟踪(2)累积操作函数accumulateSquare()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将源图像的平方加到累积器图像中。

该函数将输入图像 src 或其选定区域提升到2的幂次方,然后加到累积器 dst 中:
dst ( x , y ) ← dst ( x , y ) + src ( x , y ) 2 if mask ( x , y ) ≠ 0 \texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0 dst(x,y)←dst(x,y)+src(x,y)2ifmask(x,y)=0

函数支持多通道图像。每个通道独立处理。

函数原型

cpp 复制代码
void cv::accumulateSquare	
(
	InputArray 	src,
	InputOutputArray 	dst,
	InputArray 	mask = noArray() 
)	

参数

  • 参数src 输入图像,可以是单通道或三通道,8位或32位浮点数。
  • 参数dst 累积器图像,通道数与输入图像相同,32位或64位浮点数。
  • 参数mask 可选的操作掩码。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat frame = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );
    if ( !frame.data )
    {
        std::cout << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 初始化累积平方和
    cv::Mat sqSum = cv::Mat::zeros( frame.size(), CV_32F );

    // 模拟多帧累积
    for ( int i = 0; i < 100; ++i )
    {
        // 使用同一图像多次以模拟多帧情况
        cv::accumulateSquare( frame, sqSum );
    }

    // 防止累积平方和为0的情况
    sqSum += 1;  // 添加一个小常数避免分母为0

    // 计算累积平方和的最大值
    double maxVal;
    cv::minMaxLoc( sqSum, nullptr, &maxVal );

    // 将累积平方和转换回8位图像以便保存
    sqSum.convertTo( sqSum, CV_8U, 255.0 / maxVal );  // 归一化

    // 显示原始图像
    cv::imshow( "Original Image", frame );

    // 显示累积平方和结果图像
    cv::imshow( "Accumulated Square Result", sqSum );

    // 等待按键,以便查看图像
    cv::waitKey( 0 );

    // 关闭所有窗口
    cv::destroyAllWindows();

    // 保存结果
    cv::imwrite( "accumulated_square_result.jpg", sqSum );

    return 0;
}

运行结果

相关推荐
IT_陈寒7 分钟前
Element Plus 2.10.0 重磅发布!新增Splitter组件
前端·人工智能·后端
jndingxin8 分钟前
OpenCV CUDA模块图像处理------创建一个模板匹配(Template Matching)对象函数createTemplateMatching()
图像处理·人工智能·opencv
盛寒33 分钟前
N元语言模型 —— 一文讲懂!!!
人工智能·语言模型·自然语言处理
weixin_1772972206940 分钟前
家政小程序开发——AI+IoT技术融合,打造“智慧家政”新物种
人工智能·物联网
Jay Kay1 小时前
ReLU 新生:从死亡困境到强势回归
人工智能·数据挖掘·回归
Blossom.1181 小时前
使用Python和Flask构建简单的机器学习API
人工智能·python·深度学习·目标检测·机器学习·数据挖掘·flask
吴声子夜歌1 小时前
OpenCV——Mat类及常用数据结构
数据结构·opencv·webpack
无声旅者2 小时前
AI 模型分类全解:特性与选择指南
人工智能·ai·ai大模型
Grassto2 小时前
Cursor Rules 使用
人工智能
MYH5162 小时前
深度学习在非线性场景中的核心应用领域及向量/张量数据处理案例,结合工业、金融等领域的实际落地场景分析
人工智能·深度学习