OpenCV运动分析和目标跟踪(2)累积操作函数accumulateSquare()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将源图像的平方加到累积器图像中。

该函数将输入图像 src 或其选定区域提升到2的幂次方,然后加到累积器 dst 中:
dst ( x , y ) ← dst ( x , y ) + src ( x , y ) 2 if mask ( x , y ) ≠ 0 \texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0 dst(x,y)←dst(x,y)+src(x,y)2ifmask(x,y)=0

函数支持多通道图像。每个通道独立处理。

函数原型

cpp 复制代码
void cv::accumulateSquare	
(
	InputArray 	src,
	InputOutputArray 	dst,
	InputArray 	mask = noArray() 
)	

参数

  • 参数src 输入图像,可以是单通道或三通道,8位或32位浮点数。
  • 参数dst 累积器图像,通道数与输入图像相同,32位或64位浮点数。
  • 参数mask 可选的操作掩码。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat frame = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );
    if ( !frame.data )
    {
        std::cout << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 初始化累积平方和
    cv::Mat sqSum = cv::Mat::zeros( frame.size(), CV_32F );

    // 模拟多帧累积
    for ( int i = 0; i < 100; ++i )
    {
        // 使用同一图像多次以模拟多帧情况
        cv::accumulateSquare( frame, sqSum );
    }

    // 防止累积平方和为0的情况
    sqSum += 1;  // 添加一个小常数避免分母为0

    // 计算累积平方和的最大值
    double maxVal;
    cv::minMaxLoc( sqSum, nullptr, &maxVal );

    // 将累积平方和转换回8位图像以便保存
    sqSum.convertTo( sqSum, CV_8U, 255.0 / maxVal );  // 归一化

    // 显示原始图像
    cv::imshow( "Original Image", frame );

    // 显示累积平方和结果图像
    cv::imshow( "Accumulated Square Result", sqSum );

    // 等待按键,以便查看图像
    cv::waitKey( 0 );

    // 关闭所有窗口
    cv::destroyAllWindows();

    // 保存结果
    cv::imwrite( "accumulated_square_result.jpg", sqSum );

    return 0;
}

运行结果

相关推荐
我爱一条柴ya1 分钟前
【AI大模型】神经网络反向传播:核心原理与完整实现
人工智能·深度学习·神经网络·ai·ai编程
万米商云6 分钟前
企业物资集采平台解决方案:跨地域、多仓库、百部门——大型企业如何用一套系统管好百万级物资?
大数据·运维·人工智能
新加坡内哥谈技术9 分钟前
Google AI 刚刚开源 MCP 数据库工具箱,让 AI 代理安全高效地查询数据库
人工智能
慕婉030711 分钟前
深度学习概述
人工智能·深度学习
大模型真好玩12 分钟前
准确率飙升!GraphRAG如何利用知识图谱提升RAG答案质量(额外篇)——大规模文本数据下GraphRAG实战
人工智能·python·mcp
198913 分钟前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
6confim13 分钟前
AI原生软件工程师
人工智能·ai编程·cursor
阿里云大数据AI技术13 分钟前
Flink Forward Asia 2025 主旨演讲精彩回顾
大数据·人工智能·flink
i小溪14 分钟前
在使用 Docker 时,如果容器挂载的数据目录(如 `/var/moments`)位于数据盘,只要服务没有读写,数据盘是否就不会被唤醒?
人工智能·docker
程序员NEO17 分钟前
Spring AI 对话记忆大揭秘:服务器重启,聊天记录不再丢失!
人工智能·后端