OpenCV运动分析和目标跟踪(2)累积操作函数accumulateSquare()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

将源图像的平方加到累积器图像中。

该函数将输入图像 src 或其选定区域提升到2的幂次方,然后加到累积器 dst 中:
dst ( x , y ) ← dst ( x , y ) + src ( x , y ) 2 if mask ( x , y ) ≠ 0 \texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0 dst(x,y)←dst(x,y)+src(x,y)2ifmask(x,y)=0

函数支持多通道图像。每个通道独立处理。

函数原型

cpp 复制代码
void cv::accumulateSquare	
(
	InputArray 	src,
	InputOutputArray 	dst,
	InputArray 	mask = noArray() 
)	

参数

  • 参数src 输入图像,可以是单通道或三通道,8位或32位浮点数。
  • 参数dst 累积器图像,通道数与输入图像相同,32位或64位浮点数。
  • 参数mask 可选的操作掩码。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat frame = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/hawk.jpg", cv::IMREAD_GRAYSCALE );
    if ( !frame.data )
    {
        std::cout << "Could not open or find the image" << std::endl;
        return -1;
    }

    // 初始化累积平方和
    cv::Mat sqSum = cv::Mat::zeros( frame.size(), CV_32F );

    // 模拟多帧累积
    for ( int i = 0; i < 100; ++i )
    {
        // 使用同一图像多次以模拟多帧情况
        cv::accumulateSquare( frame, sqSum );
    }

    // 防止累积平方和为0的情况
    sqSum += 1;  // 添加一个小常数避免分母为0

    // 计算累积平方和的最大值
    double maxVal;
    cv::minMaxLoc( sqSum, nullptr, &maxVal );

    // 将累积平方和转换回8位图像以便保存
    sqSum.convertTo( sqSum, CV_8U, 255.0 / maxVal );  // 归一化

    // 显示原始图像
    cv::imshow( "Original Image", frame );

    // 显示累积平方和结果图像
    cv::imshow( "Accumulated Square Result", sqSum );

    // 等待按键,以便查看图像
    cv::waitKey( 0 );

    // 关闭所有窗口
    cv::destroyAllWindows();

    // 保存结果
    cv::imwrite( "accumulated_square_result.jpg", sqSum );

    return 0;
}

运行结果

相关推荐
未来智慧谷7 分钟前
技术周报 | 特朗普签令统一AI监管;长三角启动应用征集;多场开发者大会本周密集召开
人工智能
智算菩萨7 分钟前
检索增强生成(RAG)技术原理深度解析:突破大模型知识边界的范式革命
人工智能·rag
mys551811 分钟前
杨建允:AI搜索趋势对教育培训行业获客的影响
人工智能·geo·ai搜索优化·geo优化·ai引擎优化
V搜xhliang024613 分钟前
AI大模型辅助临床医学科研应用、论文写作、数据分析与AI绘图学习班
人工智能·数据挖掘·数据分析
世界那么哒哒29 分钟前
告别“猜需求”式编程:这个开源工具让 AI 编码变得真正的可控
人工智能
deephub30 分钟前
DeepSeek-R1 与 OpenAI o3 的启示:Test-Time Compute 技术不再迷信参数堆叠
人工智能·python·深度学习·大语言模型
homelook32 分钟前
蓝牙的服务和特征值的含义
人工智能
yzx99101340 分钟前
从“识别猫”到诊断疾病:卷积神经网络如何改变我们的视觉世界
人工智能·神经网络·cnn
serve the people1 小时前
LSTM 模型 简要解析
人工智能·rnn·lstm
资源补给站1 小时前
论文10-ICCV 2025 | WaveMamba:面向RGB-红外目标检测的多频域Mamba融合新范式
人工智能·计算机视觉·目标跟踪