Leetcode - 139双周赛

目录

[一,3285. 找到稳定山的下标](#一,3285. 找到稳定山的下标)

[二,3286. 穿越网格图的安全路径](#二,3286. 穿越网格图的安全路径)

[三,3287. 求出数组中最大序列值](#三,3287. 求出数组中最大序列值)

[四,3288. 最长上升路径的长度](#四,3288. 最长上升路径的长度)


一,3285. 找到稳定山的下标

本题就是找[0, n-2]中,height[i] 小于 threshold 的所有下标,直接枚举,代码如下:

java 复制代码
class Solution {
    public List<Integer> stableMountains(int[] height, int threshold) {
        List<Integer> ans = new ArrayList<>();
        for(int i=0; i<height.length-1; i++){
            if(height[i] > threshold)
                ans.add(i+1);
        }
        return ans;
    }
}

二,3286. 穿越网格图的安全路径

本题就是一道求从起点到终点的最短边权,是一道经典的djstra问题,只不过这里是使用(x,y)这样的坐标来表示当前位置,代码如下:

java 复制代码
class Solution {
    int[][] dirct = new int[][]{{1,0},{-1,0},{0,1},{0,-1}};
    public boolean findSafeWalk(List<List<Integer>> grid, int health) {
        int m = grid.size(), n = grid.get(0).size();
        int[][] dis = new int[m][n];//(0,0)->(i,j)的安全路线
        for(int i=0; i<m; i++) Arrays.fill(dis[i], Integer.MAX_VALUE/2);
        PriorityQueue<int[]> que = new PriorityQueue<>((x,y)->x[0]-y[0]);
        que.add(new int[]{grid.get(0).get(0), 0, 0});
        dis[0][0] = grid.get(0).get(0);
        while(!que.isEmpty()){
            int[] t = que.poll();
            if(t[0] != dis[t[1]][t[2]]) continue;
            for(int[] d : dirct){
                int x = t[1] + d[0], y = t[2] + d[1];
                if(x>=0 && x<m && y>=0 && y<n){
                    if(dis[t[1]][t[2]] + grid.get(x).get(y) < dis[x][y]){
                        dis[x][y] = dis[t[1]][t[2]] + grid.get(x).get(y);
                        que.add(new int[]{dis[x][y], x, y});
                    }
                }
            }
        }
        return dis[m-1][n-1] < health;
    } 
}

但是题目中说,边权仅为0 / 1,所以我们可以使用双端队列来模拟最小堆,可以节约一些时间,代码如下:

java 复制代码
class Solution {
    int[][] dirct = new int[][]{{1,0},{-1,0},{0,1},{0,-1}};
    public boolean findSafeWalk(List<List<Integer>> grid, int health) {
        ArrayDeque<int[]> que = new ArrayDeque<>();
        que.add(new int[]{0, 0});
        int m = grid.size(), n = grid.get(0).size();
        int[][] dis = new int[m][n];//(0,0)->(i,j)的安全路线
        for(int i=0; i<m; i++) Arrays.fill(dis[i], Integer.MAX_VALUE/2);
        dis[0][0] = grid.get(0).get(0);
        while(!que.isEmpty()){
            int[] t = que.poll();
            for(int[] d : dirct){
                int x = t[0] + d[0], y = t[1] + d[1];
                if(x>=0 && x<m && y>=0 && y<n){
                    if(dis[t[0]][t[1]] + grid.get(x).get(y) < dis[x][y]){
                        dis[x][y] = dis[t[0]][t[1]] + grid.get(x).get(y);
                        if(grid.get(x).get(y) == 0)
                            que.addFirst(new int[]{x, y});
                        else
                            que.addLast(new int[]{x, y});
                    }
                }
            }
        }
        return dis[m-1][n-1] < health;
    } 
}

三,3287. 求出数组中最大序列值

由于本题是数据范围较小,所以我们可以暴力求出左半边和右半边的所有子序列进行或运算得到的值,再通过枚举中间位置来求出 x ^ y 的最大值。

这里的主要问题就是如何计算出左半边和右半边能得到的所有或值,我们可以定义一个f[i][j][x]:表示能否从前 i 个数中选择 j 个数,且或值恰好为 x。

  • 不选 v = nums[i],f[i+1][j][x] = f[i][j-1][x]
  • 选 v = nums[i],f[i+1][j][x|v] = f[i+1][j][x|v] or f[i][j-1][x]

代码如下:

java 复制代码
class Solution {
    public int maxValue(int[] nums, int k) {
        int n = nums.length;
        int MX = 1<<7;
        boolean[][][] pre = new boolean[n+1][k+1][1<<7];
        for(int i=0; i<=n; i++) pre[i][0][0] = true;
        for (int i=0; i<n; i++){
            int v = nums[i];
            for (int j=1; j<=k; j++){
                for (int x=0; x<MX; x++){   
                    pre[i+1][j][x] |= pre[i][j][x];
                    pre[i+1][j][x|v] |= pre[i][j-1][x];
                }
            }
        }
        boolean[][][] suf = new boolean[n+1][k+1][1<<7];
        for(int i=0; i<=n; i++) suf[i][0][0] = true;
        for (int i=n-1; i>=0; i--){
            int v = nums[i];
            for (int j=1; j<=k; j++){
                for (int x=0; x<MX; x++){
                    suf[i][j][x] |= suf[i+1][j][x];
                    suf[i][j][x|v] |= suf[i+1][j-1][x];
                }
            }
        }
        int ans = 0;
        for(int i = k - 1; i < n - k; i++){
            for(int x = 0; x < MX; x++){
                if(pre[i + 1][k][x]){
                    for(int y = 0; y < MX; y++){
                        if(suf[i + 1][k][y]){
                            ans = Math.max(ans, x ^ y);
                        }
                    }
                }
            }
        }
        return ans;
    }
}

四,3288. 最长上升路径的长度

本题就是求最长上升子序列的题,只不过这里改成了坐标的形式,我们需要先给坐标按横坐标排序,在使用二分,但是需要注意的点是,可能存在有多个点,它们的横坐标相同,如果在横坐标相同时,纵坐标从小到大来排序,那么在计算的时候会重复计算,但是题目要求每个横纵坐标都要大于前一个点才算是上升序列,所以我们在横坐标相同时,纵坐标从大到小来排序,这样一来每个横坐标就只会计算一个纵坐标的点。

代码如下:

java 复制代码
class Solution {
    public int maxPathLength(int[][] c, int k) {
        int n = c.length;
        int a = c[k][0], b = c[k][1];
        Arrays.sort(c, (x, y)->x[0]==y[0]?y[1]-x[1]:x[0]-y[0]);
        int[] f = new int[n+1];
        int ret = 0;
        for(int[] t : c){
            if(t[0] < a && t[1] < b || t[0] > a && t[1] > b){
                if(ret == 0 || f[ret] < t[1]){
                    f[++ret] = t[1];
                }else{
                    int l = 1, r = ret;
                    while(l <= r){
                        int mid = (l + r) / 2;
                        if(f[mid] < t[1]) l = mid + 1;
                        else r = mid - 1;
                    }
                    f[l] = t[1]; 
                }
            }
        }
        return ret + 1;
    }
}
相关推荐
ThisIsClark几秒前
【后端面试总结】MySQL主从复制逻辑的技术介绍
mysql·面试·职场和发展
XiaoLeisj24 分钟前
【递归,搜索与回溯算法 & 综合练习】深入理解暴搜决策树:递归,搜索与回溯算法综合小专题(二)
数据结构·算法·leetcode·决策树·深度优先·剪枝
Jasmine_llq44 分钟前
《 火星人 》
算法·青少年编程·c#
闻缺陷则喜何志丹1 小时前
【C++动态规划 图论】3243. 新增道路查询后的最短距离 I|1567
c++·算法·动态规划·力扣·图论·最短路·路径
Lenyiin1 小时前
01.02、判定是否互为字符重排
算法·leetcode
鸽鸽程序猿1 小时前
【算法】【优选算法】宽搜(BFS)中队列的使用
算法·宽度优先·队列
Jackey_Song_Odd1 小时前
C语言 单向链表反转问题
c语言·数据结构·算法·链表
Watermelo6172 小时前
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
开发语言·前端·javascript·算法·数据挖掘·数据分析·ecmascript
乐之者v2 小时前
leetCode43.字符串相乘
java·数据结构·算法