2024年一区极光优化+分解+深度学习!VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测

2024年一区极光优化+分解+深度学习!VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测

目录

效果一览







基本介绍

1.中秋献礼!中科院一区极光优化算法+分解组合对比!VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测,变分模态分解+极光优化算法优化Transformer结合门控循环单元多变量时间序列预测(程序可以作为核心级论文代码支撑,目前尚未发表);极光优化算法 Polar Lights Optimization (PLO)的元启发式算法。极光是一种独特的自然奇观,当来自太阳风的高能粒子在地磁场和地球大气层的影响下汇聚在地球两极时,就会发生极光。该成果于2024年8月最新发表在国际顶级JCR 1区、中科院 Top SCI期刊 Neurocomputing。

2.优化参数为:学习率,隐含层单元数目,最大训练周期,运行环境为Matlab2023b及以上;

3.数据集为excel(光伏功率数据集,输入辐射度、气温、气压、湿度,输出光伏功率),输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测,主程序运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

先运行main1VMD,进行vmd分解;再运行main2PLOTransformerGRU,三个模型对比;注意:一种算法不是万能的,不同的数据集效果会有差别,后面的工作就是需要调整参数。,不同的数据集效果会有差别,后面的工作就是需要调整参数。

数据集

参考文献

程序设计

  • 完整程序和数据获取方式私信博主回复VMD-PLO-Transformer-GRU多变量时间序列光伏功率预测(Matlab)
clike 复制代码
X = xlsread('北半球光伏数据.xlsx','C2:E296');

save origin_data X

L=length(X);%采样点数,即有多少个数据
t=(0:L-1)*Ts;%时间序列
STA=0; %采样起始位置,这里第0h开始采样

%--------- some sample parameters forVMD:对于VMD样品参数进行设置---------------
alpha = 2500;       % moderate bandwidth constraint:适度的带宽约束/惩罚因子
tau = 0;          % noise-tolerance (no strict fidelity enforcement):噪声容限(没有严格的保真度执行)
K = 5;              % modes:分解的模态数
DC = 0;             % no DC part imposed:无直流部分
init = 1;           % initialize omegas uniformly  :omegas的均匀初始化
tol = 1e-7         
%--------------- Run actual VMD code:数据进行vmd分解---------------------------
[u, u_hat, omega] = VMD(X(:,end), alpha, tau, K, DC, init, tol);



%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关推荐
罗西的思考9 小时前
【Agent】MemOS 源码笔记---(5)---记忆分类
人工智能·深度学习·算法
深度学习实战训练营11 小时前
U-Net++:嵌套密集跳跃连接,多尺度融合增强特征表达,医学影像分割的unet创新-k学长深度学习专栏
人工智能·深度学习
哥布林学者11 小时前
吴恩达深度学习课程四:计算机视觉 第二周:经典网络结构 (一)经典卷积网络
深度学习·ai
Coding茶水间11 小时前
基于深度学习的反光衣检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
IT·小灰灰12 小时前
告别“翻墙“烦恼:DMXAPI让Gemini-3-pro-thinking调用快如闪电
网络·人工智能·python·深度学习·云计算
DatGuy12 小时前
Week 29: 深度学习补遗:MoE的稳定性机制与路由策略实现
人工智能·深度学习
一瞬祈望14 小时前
PyTorch 图像分类完整项目模板实战
人工智能·pytorch·python·深度学习·分类
Master_oid15 小时前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
江上鹤.14815 小时前
Day37 MLP神经网络的训练
人工智能·深度学习·神经网络
java1234_小锋16 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer