深度学习——D2(数据操作)

N维数组


创建数组

访问元素

一列: [ : , 1 ]

反向累积、正向累积(自动求导)



梯度

  • 梯度(Gradient)是微积分中的一个重要概念,主要用于描述一个函数在某个区域内的变化情况。以下是对梯度的详细解释:

一、定义

梯度是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。在二维空间中,梯度可以表示为一个二维向量;在三维空间中,则是一个三维向量。

二、性质

方向性:梯度的方向是函数值增加最快的方向。

模的大小:梯度的模(即大小)表示函数在该点处变化率的大小。模越大,说明函数在该点的变化率也越大。

非负性:梯度的模总是非负的,即函数在某点的梯度不会指向函数值减小的方向。

极值条件:当梯度为零时,函数在该点取得极值(极大值或极小值)。

三、计算

以二维函数为例,设函数f(x, y)在点P(x0, y0)处的梯度为∇f(x0, y0),则梯度可以表示为:

∇f(x0, y0) = (∂f/∂x)(x0, y0), (∂f/∂y)(x0, y0)

其中,∂f/∂x表示函数f关于x的偏导数,∂f/∂y表示函数f关于y的偏导数。同理,可以推广到三维及更高维的情况。

四、应用

梯度在多个领域有着广泛的应用,包括但不限于:

  • 机器学习:梯度下降法是一种常用的优化算法,用于求解最小化损失函数的问题。通过计算损失函数关于模型参数的梯度,沿着梯度的负方向更新参数,从而逐步优化模型。
  • 计算机视觉:在图像处理中,边缘检测、图像分割等任务需要找到图像中灰度值变化最快的区域。通过计算图像在每个像素点的梯度,可以得到图像的边缘信息。
    信号处理:在信号去噪、滤波等任务中,通过计算信号在不同频率下的梯度,可以对信号进行频域分析和处理。
  • 综上所述,梯度是微积分中一个重要的概念,它描述了函数在某个点处的变化情况和方向。通过计算梯度,我们可以更好地理解函数的性质和行为,并在多个领域中进行有效的应用。

范数

相关推荐
加油吧zkf18 小时前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
START_GAME18 小时前
深度学习Diffusers:用 DiffusionPipeline 实现图像生成
开发语言·python·深度学习
koo36420 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波20 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客20 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室20 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭20 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
牛客企业服务20 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
infominer21 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
wudl556621 小时前
华工科技(000988)2025年4月22日—10月22日
大数据·人工智能·科技