深度学习——D2(数据操作)

N维数组


创建数组

访问元素

一列: [ : , 1 ]

反向累积、正向累积(自动求导)



梯度

  • 梯度(Gradient)是微积分中的一个重要概念,主要用于描述一个函数在某个区域内的变化情况。以下是对梯度的详细解释:

一、定义

梯度是一个向量,表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。在二维空间中,梯度可以表示为一个二维向量;在三维空间中,则是一个三维向量。

二、性质

方向性:梯度的方向是函数值增加最快的方向。

模的大小:梯度的模(即大小)表示函数在该点处变化率的大小。模越大,说明函数在该点的变化率也越大。

非负性:梯度的模总是非负的,即函数在某点的梯度不会指向函数值减小的方向。

极值条件:当梯度为零时,函数在该点取得极值(极大值或极小值)。

三、计算

以二维函数为例,设函数f(x, y)在点P(x0, y0)处的梯度为∇f(x0, y0),则梯度可以表示为:

∇f(x0, y0) = (∂f/∂x)(x0, y0), (∂f/∂y)(x0, y0)

其中,∂f/∂x表示函数f关于x的偏导数,∂f/∂y表示函数f关于y的偏导数。同理,可以推广到三维及更高维的情况。

四、应用

梯度在多个领域有着广泛的应用,包括但不限于:

  • 机器学习:梯度下降法是一种常用的优化算法,用于求解最小化损失函数的问题。通过计算损失函数关于模型参数的梯度,沿着梯度的负方向更新参数,从而逐步优化模型。
  • 计算机视觉:在图像处理中,边缘检测、图像分割等任务需要找到图像中灰度值变化最快的区域。通过计算图像在每个像素点的梯度,可以得到图像的边缘信息。
    信号处理:在信号去噪、滤波等任务中,通过计算信号在不同频率下的梯度,可以对信号进行频域分析和处理。
  • 综上所述,梯度是微积分中一个重要的概念,它描述了函数在某个点处的变化情况和方向。通过计算梯度,我们可以更好地理解函数的性质和行为,并在多个领域中进行有效的应用。

范数

相关推荐
2***57421 小时前
人工智能在智能投顾中的算法
人工智能·算法
草莓熊Lotso2 小时前
Git 分支管理:从基础操作到协作流程(本地篇)
大数据·服务器·开发语言·c++·人工智能·git·sql
youngfengying2 小时前
Swin Transformer
人工智能·深度学习·transformer
User_芊芊君子2 小时前
光影协同:基于Rokid CXR-M SDK构建工业级远程专家协作维修系统
人工智能
摘星编程2 小时前
AI文物复活馆:基于 AiOnly 一键调用 Claude 4.5 + Gemini 3 Pro 的多模态复原神器
人工智能·aionly
AI绘画哇哒哒3 小时前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
CNRio4 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll4 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计7 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z8 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib