kalman滤波三:时序数据预测(一维kalman滤波)

文章目录

以下是一个测距的应用,在图像上计算目标离参考点的距离,测距的方法存在一些偶然性,例如目标检测模型在某一帧里面没有检测到物体,或者目标检测的框在目标物周围跳动,这些因素在实际的数值上就会表现出很多毛刺尖峰,但是目标物的移动都是平滑的不会跳变,在此场景下采用kalman滤波可以使距离值变得更加平滑。

原理

kalman滤波一:基础理论

kalman滤波二:二维目标跟踪

一维kalman滤波

测量的值是一个目标物离参考点的距离,在kalman滤波中状态变量考虑位置和速度两个变量。具体如下:

状态变量

x = [ d , d ˙ ] T x = [d, \dot{d}]^T x=[d,d˙]T
d : 目标物离参考点的距离 d:目标物离参考点的距离 d:目标物离参考点的距离
d ˙ : 目标相对参考点的速度 \dot{d}: 目标相对参考点的速度 d˙:目标相对参考点的速度

测量值

z = [ d ] z = [d] z=[d]

状态转移矩阵

F = [ 1 Δ t 0 1 ] \mathbf{F}= \begin{bmatrix} 1 & \Delta{t} \\ 0 & 1 \end{bmatrix} F=[10Δt1]

示例代码:

python 复制代码
import os
import numpy as np
import matplotlib.pyplot as plt

def generate_mock_data(n_points=100, start=0, noise_level=5):
    """
    Generate mock distance data with a linear trend and some noise.
    
    Args:
    n_points : int - number of data points to generate.
    start : float - starting value of the distance.
    noise_level : float - standard deviation of the Gaussian noise.
    
    Returns:
    np.array - array of mock distance data.
    """
    true_values = start + np.linspace(0, 10, n_points)
    noisy_values = true_values + np.random.normal(0, noise_level, n_points)
    return noisy_values

def demo_of_kalman():
    # Generate mock data
    distance_list = generate_mock_data(n_points=100, start=10, noise_level=5)
    
    # Initialize Kalman Filter
    kf = KalmanFilter()
    predict_list = []
    
    # Run Kalman Filter on the mock data
    for distance in distance_list:
        kf.update(np.array([[distance]]))
        predict = kf.predict()
        predict_list.append(predict[0][0])

    # Plotting the results
    frame_id = np.arange(len(distance_list))
    frame_id = frame_id * 4  # Assuming data is collected at a rate of 4 Hz
    plt.figure(figsize=(10, 6))
    plt.plot(frame_id, distance_list, label="Measured Distance")
    plt.plot(frame_id, predict_list, label="Kalman Filter Prediction", linestyle='--')
    plt.xlabel("Frame ID")
    plt.ylabel("Distance")
    plt.title("Kalman Filter Demo")
    plt.legend()
    plt.grid(True)
    plt.show()

class KalmanFilter:
    def __init__(self):
        self.dt = 1.0 / 25.0 * 4.0
        self.F = np.array([[1, self.dt], [0, 1]])  # State transition matrix
        self.H = np.array([[1, 0]])  # Observation matrix
        self.Q = np.array([[1, 0], [0, 0.1]])  # Process noise covariance
        self.R = np.array([[25]])
        self.P = np.array([[1, 0], [0, 1]])  # State estimate covariance
        self.x = np.array([[0], [0]])

    def predict(self):
        self.x = self.F.dot(self.x)  # x(k) = F * x(k-1)
        self.P = self.F.dot(self.P).dot(self.F.T) + self.Q
        return self.x
    
    def update(self, z):
        K = self.P.dot(self.H.T).dot(np.linalg.inv(self.H.dot(self.P).dot(self.H.T) + self.R))
        self.x = self.x + K.dot(z - self.H.dot(self.x))
        S = np.eye(2) - K.dot(self.H)
        self.P = S.dot(self.P).dot(S.T) + K.dot(self.R).dot(K.T)

if __name__ == "__main__":
    demo_of_kalman()

运行结果:

真实场景示例

以下是真实场景中使用kalman滤波的距离,可以看到一维kalman滤波不仅很好的滤除了尖峰毛刺还有部分缺失数据,而且能很好的跟上真实数据的变化。

相关推荐
数模竞赛Paid answer15 小时前
2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
数学建模·数据分析·mathorcup
晚点吧1 天前
视频横屏转竖屏播放-使用人脸识别+目标跟踪实现
人工智能·目标跟踪·音视频
风走茶未凉1 天前
目标检测(object detection)
人工智能·目标检测·目标跟踪
数模竞赛Paid answer2 天前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup
哈听星2 天前
解非线性方程组
数学建模·matlab
阑梦清川3 天前
数学建模---利用Matlab快速实现机器学习(上)
机器学习·数学建模·matlab·预测算法
思通数科AI全行业智能NLP系统5 天前
智慧城市路面垃圾识别系统产品介绍方案
人工智能·深度学习·目标检测·计算机视觉·目标跟踪·自然语言处理·数据挖掘
静静AI学堂5 天前
Yolo11改进策略:上采样改进|CARAFE,轻量级上采样|即插即用|附改进方法+代码
人工智能·yolo·目标跟踪
Terry_trans6 天前
数学建模经验:主攻美赛CEF题的队伍应该掌握的基础
数学建模
jndingxin6 天前
OpenCV视觉分析之目标跟踪(12)找到局部的最大值函数meanShift()的使用
人工智能·opencv·目标跟踪