OpenCV 3

模板匹配方法

尽量采用归一化的方法,因为它更加精细。

匹配效果展示

匹配单一图像

这是一段Python代码,主要使用了OpenCV库进行图像处理。这段代码的主要功能是通过模板匹配方法在一张大图中找到一个小图的位置。

具体来说:

  • 第一行的`for meth in methods:`表示遍历一个包含不同模板匹配方法的列表。

  • `img2 = img.copy()`复制原图像用于后续操作。

  • `method = eval(meth)`将字符串类型的匹配方法转换为Python能够识别的对象。

  • `print (method)`打印当前使用的匹配方法。

  • `res = cv2.matchTemplate(img, template, method)`

调用OpenCV的matchTemplate函数进行模板匹配,其中`img`是大图,`template`是小图,`method`是匹配方法。

  • `min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)`

获取匹配结果中的最小值、最大值以及它们对应的位置。

  • 接下来的两行代码根据不同的匹配方法选择位置:

  • 如果是平方差匹配(TM_SQDIFF或TM_SQDIFF_NORMED),取最小值;

  • 否则是最大值。

  • `cv2.rectangle(img2, top_left, bottom_right, 255, 2)`在原图像上画出矩形框,标出小图的位置。

  • 最后几行代码是用来显示匹配结果的:

  • `plt.subplot(121), plt.imshow(res, cmap='gray')`显示匹配结果灰度图;

  • `plt.subplot(122), plt.imshow(img2, cmap='gray')`显示带有标记的小图位置的灰度图;

  • `plt.suptitle(meth)`设置整个图表的标题;

  • `plt.show()`显示图表。

这段代码会循环执行上述步骤,尝试不同的模板匹配方法,并展示每个方法的结果。

将BGR格式的图片转为灰度图

img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)

读取模板图片

template = cv2.imread('mario_coin.jpg', 0)

以上代码首先导入了OpenCV库并读取了两张图片,一张是待搜索的大图('mario.jpg'),另一张是需要在大图中查找的目标模板('mario_coin.jpg')。然后将大图转换为灰度图以便于后续的匹配操作。

获取模板的高度和宽度

h, w = template.shape[:2]

这行代码获取了模板图像的尺寸(高度和宽度),并将它们存储到变量`h`和`w`中。

使用归一化相关系数进行模板匹配

res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)

此部分使用OpenCV的`matchTemplate`函数进行模板匹配,该函数接受两个参数:一个是源图像(灰度图),另一个是模板图像。`cv2.TM_CCOEFF_NORMED`是一个预定义常量,代表使用归一化相关系数作为匹配算法。`matchTemplate`函数返回一个二维数组,其中每个元素都表示相应位置与模板的匹配程度。

threshold = 0.8

loc = np.where(res >= threshold)

这里设定一个阈值(`threshold`),只有当匹配程度大于等于该阈值时才会认为找到了匹配项。`np.where(res >= threshold)`返回所有满足条件的坐标索引。

for pt in zip(*loc[::-1]):

*号表示可选参数

bottom_right = (pt[0] + w, pt[1] + h)

cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)

这段代码遍历所有满足条件的坐标点,并绘制一个红色的矩形框以突出显示找到的匹配区域。`zip(*loc[::-1])`将`loc`中的行和列索引反转,使其符合左上角和右下角坐标的顺序。

cv2.imshow('img_rgb', img_rgb)

cv2.waitKey(0)

最后,显示处理后的图像,并等待用户按键退出程序。

总结起来,这段代码的作用是从一张图片中找出多处与另一张图片相似的区域,并在原图上标注出来。

图像金字塔定义 金字塔制作方法

高斯金字塔

向上up 放大图片

向下down 缩小图片

若先放大再缩小,图片不会还是原来的图片,他会变得模糊


拉普拉斯金字塔


这套操作用来将图片1中的东西和图片2匹配出来

相关推荐
唯道行3 分钟前
计算机图形学·23 Weiler-Athenton多边形裁剪算法
算法·计算机视觉·几何学·计算机图形学·opengl
汽车仪器仪表相关领域27 分钟前
LambdaCAN:重构专业空燃比测量的数字化范式
大数据·人工智能·功能测试·安全·重构·汽车·压力测试
璞华Purvar33 分钟前
地方产投集团数字化平台建设实战:从内控管理到决策赋能(璞华公开课第5期活动回顾)
大数据·人工智能
Byron Loong44 分钟前
【半导体】KLA 公司eDR介绍
人工智能
Jay20021111 小时前
【机器学习】31-32 强化学习介绍 & 状态-动作值函数
人工智能·机器学习
测试人社区-千羽1 小时前
大语言模型在软件测试中的应用与挑战
人工智能·测试工具·语言模型·自然语言处理·面试·职场和发展·aigc
niaonao1 小时前
企业级AI Agent本地化部署实战:基于讯飞星辰与Astron的实战详解(附避坑清单)
人工智能·agent·科大讯飞·astron
ModelWhale2 小时前
实训赋能,平台支撑:和鲸科技助力南京大学人工智能基础课落地
人工智能·科技
胡萝卜3.02 小时前
C++现代模板编程核心技术精解:从类型分类、引用折叠、完美转发的内在原理,到可变模板参数的基本语法、包扩展机制及emplace接口的底层实现
开发语言·c++·人工智能·机器学习·完美转发·引用折叠·可变模板参数
Codebee2 小时前
OODER图生代码框架:Java注解驱动的全栈实现与落地挑战
人工智能