Hadoop三大组件之HDFS(一)

1. HDFS的架构

HDFS(Hadoop Distributed File System)采用主从架构,由一个NameNode(主节点)和多个DataNode(从节点)组成。NameNode负责管理数据块映射信息(如文件名、文件目录、权限、块位置等)并配置副本策略,而DataNode负责存储实际的数据块。Secondary NameNode辅助NameNode进行元数据的检查点操作。

2. HDFS的读写流程

2.1 写流程

  1. 客户端向NameNode发起写请求,提供文件名和大小等信息。
  2. NameNode将文件划分为数据块,记录副本位置并返回给客户端。
  3. 客户端根据位置信息,将数据块发送给对应的DataNode。
  4. DataNode接收数据块后,将其存储到本地磁盘。
  5. 在写入时,DataNode先写入临时文件,完成后转为永久文件。
  6. DataNode定期向NameNode报告数据块信息。

2.2 读流程

  1. 客户端访问NameNode,查询元数据,获得数据块位置列表。
  2. 选择就近的DataNode服务器,建立输入流请求。
  3. DataNode向输入流中写数据,以packet校验。
  4. 关闭输入流。

3. HDFS的优缺点

3.1 优点

  • 高容错:数据块复制存储,节点故障时自动恢复。
  • 高吞吐:并行处理数据块,高效读写和批处理。
  • 适合大文件:将大文件分块存储,适合大规模数据处理。

3.2 缺点

  • 延迟高:不适合低延迟数据访问。
  • 小文件存储不高效:浪费存储空间和元数据开销。

使用场景:大规模数据存储和计算、日志分析。

4. HDFS默认存储块大小

HDFS默认块大小为128MB(2.3版本后),基于最佳传输损耗理论。较大文件块减少寻址时间,提高传输效率。

5. HDFS的心跳机制

DataNode每隔3秒向NameNode发送心跳信号,报告状态和存储信息。如10分钟未收到心跳信号,NameNode认为节点不可用,并重新分配数据块副本。

6. HDFS的负载均衡

HDFS的负载均衡机制确保数据在DataNode上的分布均匀。当DataNode存储利用率过高时,系统自动将数据迁移至空闲的DataNode。通过手动命令或配置参数调整负载均衡策略。

7. Secondary NameNode

Secondary NameNode辅助NameNode进行元数据的检查点操作。定期从NameNode获取fsimage和edits文件,合并生成新的fsimage文件,发送回NameNode,以减小edits文件大小,防止NameNode重启时加载过多日志。


相关推荐
Leo.yuan16 分钟前
数据量大Excel卡顿严重?选对报表工具提高10倍效率
数据库·数据分析·数据可视化·powerbi
Runing_WoNiu25 分钟前
MySQL与Oracle对比及区别
数据库·mysql·oracle
SafePloy安策37 分钟前
ES信息防泄漏:策略与实践
大数据·elasticsearch·开源
学术搬运工43 分钟前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
天道有情战天下1 小时前
mysql锁机制详解
数据库·mysql
看山还是山,看水还是。1 小时前
Redis 配置
运维·数据库·redis·安全·缓存·测试覆盖率
谷新龙0011 小时前
Redis运行时的10大重要指标
数据库·redis·缓存
CodingBrother1 小时前
MySQL 中单列索引与联合索引分析
数据库·mysql
精进攻城狮@1 小时前
Redis缓存雪崩、缓存击穿、缓存穿透
数据库·redis·缓存
小酋仍在学习1 小时前
光驱验证 MD5 校验和
数据库·postgresql