k均值算法 聚类算法 k-means

首先我们导入科学计算的库

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

直接我们生成一组数据,为了保证每次的数据是一致的,我们设置一个随机种子。

python 复制代码
np.random.seed(0)
X=np.random.rand(100,2)
print(X)

结果

然后我们就要开始写K-means算法

写一个模块函数

python 复制代码
def k_means(X,K,max_iters=100):
    #随机选择k个初始中心
    centroids=X[np.random.choice(X.shape[0],K,replace=False)]
#X.shape[0]告诉np.random.choice函数需要从0到数据点总数之间随机选择索引。
#K是指选择几个 replace指选择不重复的 然后用np.random.choice函数来从X里面选择几个不重复的
    
    for _ in range(max_iters):
    #1.分配每个数据点到最近的中心
        distances=np.linalg.norm(X[:,np.newaxis]-centroids,axis=2)#计算距离
        labels=np.argmin(distances,axis=1)#分配标签
                #2.更新中心
        new_centroids=np.array([X[labels==k].mean(axis=0) for k in range(K)])


        #如果中心不再变化,则停止
        if np.all(centroids==new_centroids):
            break
        centroids=new_centroids
    return labels,centroids
        
python 复制代码
K=3 #簇的数量
labels,centroids=k_means(X,K)

设置一下簇的数量,k-means算法每次都要设置k值

然后把最后的中心点和分类后的数据用matplotlib画出来

python 复制代码
plt.scatter(X[:,0],X[:,1],c=labels,cmap='viridis',marker='o')#绘制数据点
plt.scatter(centroids[:,0],centroids[:,1],c='red',marker='x',s=200)#绘制中心点
plt.title('k-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
想跑步的小弱鸡5 小时前
Leetcode hot 100(day 3)
算法·leetcode·职场和发展
xyliiiiiL6 小时前
ZGC初步了解
java·jvm·算法
爱的叹息7 小时前
RedisTemplate 的 6 个可配置序列化器属性对比
算法·哈希算法
独好紫罗兰7 小时前
洛谷题单2-P5713 【深基3.例5】洛谷团队系统-python-流程图重构
开发语言·python·算法
每次的天空8 小时前
Android学习总结之算法篇四(字符串)
android·学习·算法
请来次降维打击!!!8 小时前
优选算法系列(5.位运算)
java·前端·c++·算法
qystca9 小时前
蓝桥云客 刷题统计
算法·模拟
别NULL9 小时前
机试题——统计最少媒体包发送源个数
c++·算法·媒体
weisian1519 小时前
Java常用工具算法-3--加密算法2--非对称加密算法(RSA常用,ECC,DSA)
java·开发语言·算法
程序员黄同学10 小时前
贪心算法,其优缺点是什么?
算法·贪心算法