k均值算法 聚类算法 k-means

首先我们导入科学计算的库

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

直接我们生成一组数据,为了保证每次的数据是一致的,我们设置一个随机种子。

python 复制代码
np.random.seed(0)
X=np.random.rand(100,2)
print(X)

结果

然后我们就要开始写K-means算法

写一个模块函数

python 复制代码
def k_means(X,K,max_iters=100):
    #随机选择k个初始中心
    centroids=X[np.random.choice(X.shape[0],K,replace=False)]
#X.shape[0]告诉np.random.choice函数需要从0到数据点总数之间随机选择索引。
#K是指选择几个 replace指选择不重复的 然后用np.random.choice函数来从X里面选择几个不重复的
    
    for _ in range(max_iters):
    #1.分配每个数据点到最近的中心
        distances=np.linalg.norm(X[:,np.newaxis]-centroids,axis=2)#计算距离
        labels=np.argmin(distances,axis=1)#分配标签
                #2.更新中心
        new_centroids=np.array([X[labels==k].mean(axis=0) for k in range(K)])


        #如果中心不再变化,则停止
        if np.all(centroids==new_centroids):
            break
        centroids=new_centroids
    return labels,centroids
        
python 复制代码
K=3 #簇的数量
labels,centroids=k_means(X,K)

设置一下簇的数量,k-means算法每次都要设置k值

然后把最后的中心点和分类后的数据用matplotlib画出来

python 复制代码
plt.scatter(X[:,0],X[:,1],c=labels,cmap='viridis',marker='o')#绘制数据点
plt.scatter(centroids[:,0],centroids[:,1],c='red',marker='x',s=200)#绘制中心点
plt.title('k-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
文火冰糖的硅基工坊15 分钟前
[人工智能-大模型-66]:模型层技术 - 两种编程范式:数学函数式编程与逻辑推理式编程,构建起截然不同的智能系统。
人工智能·神经网络·算法·1024程序员节
im_AMBER39 分钟前
Leetcode 34
算法·leetcode
im_AMBER1 小时前
Leetcode 31
学习·算法·leetcode
吃着火锅x唱着歌1 小时前
LeetCode 74.搜索二维矩阵
算法·leetcode·矩阵
mit6.8241 小时前
hash|快速幂|栈
算法
OG one.Z1 小时前
06_决策树
算法·决策树·机器学习
爪哇部落算法小助手2 小时前
每日两题day23
算法
妮妮喔妮2 小时前
10.25复习LRU缓存[特殊字符]
算法
linff9113 小时前
hot 100 技巧题
数据结构·算法·leetcode
暴风鱼划水3 小时前
卡码网语言基础课(Python) | 19.洗盘子
python·算法