k均值算法 聚类算法 k-means

首先我们导入科学计算的库

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

直接我们生成一组数据,为了保证每次的数据是一致的,我们设置一个随机种子。

python 复制代码
np.random.seed(0)
X=np.random.rand(100,2)
print(X)

结果

然后我们就要开始写K-means算法

写一个模块函数

python 复制代码
def k_means(X,K,max_iters=100):
    #随机选择k个初始中心
    centroids=X[np.random.choice(X.shape[0],K,replace=False)]
#X.shape[0]告诉np.random.choice函数需要从0到数据点总数之间随机选择索引。
#K是指选择几个 replace指选择不重复的 然后用np.random.choice函数来从X里面选择几个不重复的
    
    for _ in range(max_iters):
    #1.分配每个数据点到最近的中心
        distances=np.linalg.norm(X[:,np.newaxis]-centroids,axis=2)#计算距离
        labels=np.argmin(distances,axis=1)#分配标签
                #2.更新中心
        new_centroids=np.array([X[labels==k].mean(axis=0) for k in range(K)])


        #如果中心不再变化,则停止
        if np.all(centroids==new_centroids):
            break
        centroids=new_centroids
    return labels,centroids
        
python 复制代码
K=3 #簇的数量
labels,centroids=k_means(X,K)

设置一下簇的数量,k-means算法每次都要设置k值

然后把最后的中心点和分类后的数据用matplotlib画出来

python 复制代码
plt.scatter(X[:,0],X[:,1],c=labels,cmap='viridis',marker='o')#绘制数据点
plt.scatter(centroids[:,0],centroids[:,1],c='red',marker='x',s=200)#绘制中心点
plt.title('k-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
web_1553427465635 分钟前
性能巅峰对决:Rust vs C++ —— 速度、安全与权衡的艺术
c++·算法·rust
计算机小白一个7 小时前
蓝桥杯 Java B 组之设计 LRU 缓存
java·算法·蓝桥杯
万事可爱^8 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
大数据追光猿10 小时前
Python应用算法之贪心算法理解和实践
大数据·开发语言·人工智能·python·深度学习·算法·贪心算法
Dream it possible!10 小时前
LeetCode 热题 100_在排序数组中查找元素的第一个和最后一个位置(65_34_中等_C++)(二分查找)(一次二分查找+挨个搜索;两次二分查找)
c++·算法·leetcode
夏末秋也凉10 小时前
力扣-回溯-46 全排列
数据结构·算法·leetcode
南宫生10 小时前
力扣每日一题【算法学习day.132】
java·学习·算法·leetcode
柠石榴10 小时前
【练习】【回溯No.1】力扣 77. 组合
c++·算法·leetcode·回溯
Leuanghing10 小时前
【Leetcode】11. 盛最多水的容器
python·算法·leetcode
qy发大财10 小时前
加油站(力扣134)
算法·leetcode·职场和发展