k均值算法 聚类算法 k-means

首先我们导入科学计算的库

python 复制代码
import numpy as np
import matplotlib.pyplot as plt

直接我们生成一组数据,为了保证每次的数据是一致的,我们设置一个随机种子。

python 复制代码
np.random.seed(0)
X=np.random.rand(100,2)
print(X)

结果

然后我们就要开始写K-means算法

写一个模块函数

python 复制代码
def k_means(X,K,max_iters=100):
    #随机选择k个初始中心
    centroids=X[np.random.choice(X.shape[0],K,replace=False)]
#X.shape[0]告诉np.random.choice函数需要从0到数据点总数之间随机选择索引。
#K是指选择几个 replace指选择不重复的 然后用np.random.choice函数来从X里面选择几个不重复的
    
    for _ in range(max_iters):
    #1.分配每个数据点到最近的中心
        distances=np.linalg.norm(X[:,np.newaxis]-centroids,axis=2)#计算距离
        labels=np.argmin(distances,axis=1)#分配标签
                #2.更新中心
        new_centroids=np.array([X[labels==k].mean(axis=0) for k in range(K)])


        #如果中心不再变化,则停止
        if np.all(centroids==new_centroids):
            break
        centroids=new_centroids
    return labels,centroids
        
python 复制代码
K=3 #簇的数量
labels,centroids=k_means(X,K)

设置一下簇的数量,k-means算法每次都要设置k值

然后把最后的中心点和分类后的数据用matplotlib画出来

python 复制代码
plt.scatter(X[:,0],X[:,1],c=labels,cmap='viridis',marker='o')#绘制数据点
plt.scatter(centroids[:,0],centroids[:,1],c='red',marker='x',s=200)#绘制中心点
plt.title('k-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关推荐
CoovallyAIHub2 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub3 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI20 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法