leetcode643:子数组最大平均数 I(滑动窗口入门之定长滑动窗口)

文章目录

  • [一、 题目描述](#一、 题目描述)
  • [二、 从暴力解法到滑动窗口](#二、 从暴力解法到滑动窗口)
    • [1. 暴力解法](#1. 暴力解法)
    • [2. 滑动窗口](#2. 滑动窗口)
  • [三、 滑动窗口的实现步骤](#三、 滑动窗口的实现步骤)
  • [四、 代码实现 (最佳实践)](#四、 代码实现 (最佳实践))
  • [五、 关键点与复杂度分析](#五、 关键点与复杂度分析)

学习完二叉树的大部分基本功后,接下来我们来学习一种非常重要且应用广泛的算法思想------ 滑动窗口 (Sliding Window) 。我们将通过一道经典的入门题 LeetCode 643 : 子数组最大平均数 I【难度:简单;通过率:44.1%】来开始。这道题是"定长滑动窗口"的完美示例

一、 题目描述

给你一个由 n 个元素组成的整数数组 nums 和一个整数 k

请你找出平均数最大且 长度为 k 的连续子数组,并输出该最大平均数。任何误差小于 10^-5 的答案都将被视为正确答案

示例:

复制代码
输入: nums = [1,12,-5,-6,50,3], k = 4
输出: 12.75
解释: 最大平均数 (12 - 5 - 6 + 50) / 4 = 51 / 4 = 12.75

输入: nums = [5], k = 1
输出: 5.00000

二、 从暴力解法到滑动窗口

1. 暴力解法

最直观的想法是什么?就是找出所有长度为 k 的连续子数组,分别计算它们的和以及平均数,然后找到其中的最大值

java 复制代码
// 暴力解法:为了对比,不推荐
public double findMaxAverage_bruteForce(int[] nums, int k) {
    double maxAvg = -Double.MAX_VALUE;
    // 遍历所有可能的子数组起点
    for (int i = 0; i <= nums.length - k; i++) {
        long sum = 0;
        // 对每个长度为 k 的子数组求和
        for (int j = i; j < i + k; j++) {
            sum += nums[j];
        }
        maxAvg = Math.max(maxAvg, (double) sum / k);
    }
    return maxAvg;
}

效率分析:

  • 外层循环 i 遍历了约 N
  • 内层循环 j 每次都执行 k
  • 时间复杂度 :O(N * k)。当 k 接近 N 时,复杂度接近 O(N²),效率很低

问题在哪?

我们做了大量的重复计算 !在计算 [1, 12, -5, -6] 的和之后,为了计算下一个子数组 [12, -5, -6, 50] 的和,我们又重新加了一遍 12, -5, -6

2. 滑动窗口

滑动窗口思想的核心就是避免重复计算 。我们可以想象有一个长度固定为 k 的"窗口"在数组上滑动

  • 当窗口向右滑动一格时,我们不需要重新计算窗口内所有元素的和
  • 我们只需要:
    1. 加上新进入窗口的元素
    2. 减去刚离开窗口的元素

这样,每次移动窗口,我们都只需要进行一次加法和一次减法,时间复杂度是 O(1)


三、 滑动窗口的实现步骤

  1. 初始化第一个窗口 :计算数组前 k 个元素的和,得到第一个窗口的和 windowSum。同时,用 windowSum 初始化 maxSum
  2. 滑动窗口 :从第 k 个元素开始遍历数组(索引从 kn-1
    • 对于每个新元素 nums[i],它将进入窗口
    • 同时,元素 nums[i-k] 将离开窗口
    • 更新窗口的和:windowSum = windowSum + nums[i] - nums[i-k]
    • 每次更新后,都用新的 windowSummaxSum 比较,并保留较大者
  3. 计算结果 :遍历结束后,maxSum 就是所有长度为 k 的子数组中的最大和。将其除以 k,即可得到最大平均数

四、 代码实现 (最佳实践)

java 复制代码
class Solution {
    public double findMaxAverage(int[] nums, int k) {
        // 1. 初始化第一个窗口的和
        long windowSum = 0;
        for (int i = 0; i < k; i++) {
            windowSum += nums[i];
        }
      
        // 用第一个窗口的和来初始化 maxSum
        long maxSum = windowSum;

        // 2. 滑动窗口
        // 从第 k 个元素开始,作为新进入窗口的元素
        for (int i = k; i < nums.length; i++) {
            // 更新窗口的和:加上新元素,减去旧元素
            // 新元素是 nums[i],旧元素是 nums[i-k]
            windowSum = windowSum + nums[i] - nums[i-k];
          
            // 更新 maxSum
            maxSum = Math.max(maxSum, windowSum);
        }

        // 3. 计算并返回最大平均数
        return (double) maxSum / k;
    }
}

五、 关键点与复杂度分析

  • 定长窗口 :本题的窗口长度 k固定 的,这是最简单的滑动窗口模型(定长滑动窗口,后面我们会继续进阶高难度的滑动窗口)
  • 双指针思想 :滑动窗口的本质是"双指针"思想的一种应用。我们可以想象一个左指针 left 和一个右指针 right 维护着这个窗口。当右指针向右移动时,左指针也以相同的速度向右移动,从而保持窗口大小不变
  • 数据类型 :在计算和时,使用 long 类型的 windowSummaxSum 是一个好习惯,可以防止当数组元素和 k 都很大时可能发生的整数溢出
  • 时间复杂度O(N) 我们只需要对数组进行一次完整的遍历
  • 空间复杂度O(1) 我们只使用了几个额外的变量来存储和,没有使用与输入规模相关的额外空间
相关推荐
麦兜*1 小时前
Spring Boot集成方案 + Elasticsearch向量检索,语义搜索核弹
java·spring boot·python·spring·elasticsearch·spring cloud·系统架构
仪器科学与传感技术博士1 小时前
python:讲懂决策树,为理解随机森林算法做准备,以示例带学习,通俗易懂,容易理解和掌握
python·算法·决策树
Absinthe_苦艾酒1 小时前
JVM学习专题(四)对象创建过程
java·jvm·后端
小指纹1 小时前
cf--思维训练
c++·算法·macos·ios·objective-c·cocoa
小指纹1 小时前
河南萌新联赛2025第(四)场【补题】
数据结构·c++·算法·macos·objective-c·cocoa·图论
菜鸟555551 小时前
河南萌新联赛2025第四场-河南大学
c++·算法·思维·河南萌新联赛
F_D_Z2 小时前
【感知机】感知机(perceptron)模型与几何解释
学习·算法·支持向量机
程序员奈斯2 小时前
苍穹外卖Day10
java
竹子_232 小时前
《零基础入门AI:传统机器学习进阶(从拟合概念到K-Means算法)》
人工智能·算法·机器学习
CodeHackerBhx2 小时前
Jenkins
java·运维·jenkins