基于YOLOv5s的无人机航拍输电线瓷瓶检测(附数据集与操作步骤)

本文主要内容:详细介绍了无人机航拍输电线瓷瓶检测的整个过程,从创建数据集到训练模型再到预测结果全部可视化操作与分析。

文末有数据集获取方式,请先看检测效果

现状

输电线路绝缘瓷瓶的检测主要依赖人工巡检。巡检人员需携带专业设备,攀爬至数十米高的输电塔,对绝缘瓷瓶进行逐一检查。但人工巡检耗时较长,安全风险高,精确度有限,无法实现对大规模输电线路的快速检测,难以发现细微的瓷瓶缺陷,容易导致漏检。

深度学习的应用正逐步改变传统的输电线路绝缘瓷瓶检测方式。

通过无人机搭载的高清摄像头捕捉实时图像,Coovally利用先进的机器视觉技术和成熟的解决方案,运用YOLO算法进行模型训练,可以对瓷瓶破损、污染及老化等异常状况快速识别。

数据集来源

公开数据集。此数据集中共包括263张照片。

操作步骤与结果分析

1.创建数据集:点击创建数据集,填入基本信息,上传图片数据压缩包和标签文件;

2.模型训练:选择任务类型、模型算法以及实验参数;

3.任务训练结束后,可查看任务是否成功及训练成功的指标数以及详细参数等;

模型训练过程中会输出日志,可以查看并跟踪在模型训练过程中出现的问题;

4.模型转换:Coovally平台支持云边端转换,可转换成onnx、TensorRT格式;

5.模型部署:模型部署完成后即可上传图片,进行预测;

图片1预测结果:

图片2预测结果:

图片3预测结果:

6.模型下载与分享:用户可根据自己的需求在Coovally平台进行下载和分享。

综上,本次训练得到的YOLOv5s模型在数据集上表现良好,感兴趣的朋友可以私信我获取数据集。​​​​​​​​​​​​​​

相关推荐
AIGC大时代34 分钟前
方法建议ChatGPT提示词分享
人工智能·深度学习·chatgpt·aigc·ai写作
糯米导航37 分钟前
ChatGPT Prompt 编写指南
人工智能·chatgpt·prompt
Damon小智39 分钟前
全面评测 DOCA 开发环境下的 DPU:性能表现、机器学习与金融高频交易下的计算能力分析
人工智能·机器学习·金融·边缘计算·nvidia·dpu·doca
赵孝正1 小时前
特征选择(机器学习)
人工智能·机器学习
QQ_7781329741 小时前
Pix2Pix:图像到图像转换的条件生成对抗网络深度解析
人工智能·神经网络
数据馅1 小时前
window系统annaconda中同时安装paddle和pytorch环境
人工智能·pytorch·paddle
高工智能汽车1 小时前
2025年新开局!谁在引领汽车AI风潮?
人工智能·汽车
不爱原创的Yoga2 小时前
自动驾驶汽车目前面临的最大技术挑战是什么?
人工智能·自动驾驶·汽车
罗小罗同学2 小时前
人工智能的出现,给生命科学领域的研究带来全新的视角|行业前沿·25-01-22
人工智能·搜索引擎·生命科学