基于YOLOv5s的无人机航拍输电线瓷瓶检测(附数据集与操作步骤)

本文主要内容:详细介绍了无人机航拍输电线瓷瓶检测的整个过程,从创建数据集到训练模型再到预测结果全部可视化操作与分析。

文末有数据集获取方式,请先看检测效果

现状

输电线路绝缘瓷瓶的检测主要依赖人工巡检。巡检人员需携带专业设备,攀爬至数十米高的输电塔,对绝缘瓷瓶进行逐一检查。但人工巡检耗时较长,安全风险高,精确度有限,无法实现对大规模输电线路的快速检测,难以发现细微的瓷瓶缺陷,容易导致漏检。

深度学习的应用正逐步改变传统的输电线路绝缘瓷瓶检测方式。

通过无人机搭载的高清摄像头捕捉实时图像,Coovally利用先进的机器视觉技术和成熟的解决方案,运用YOLO算法进行模型训练,可以对瓷瓶破损、污染及老化等异常状况快速识别。

数据集来源

公开数据集。此数据集中共包括263张照片。

操作步骤与结果分析

1.创建数据集:点击创建数据集,填入基本信息,上传图片数据压缩包和标签文件;

2.模型训练:选择任务类型、模型算法以及实验参数;

3.任务训练结束后,可查看任务是否成功及训练成功的指标数以及详细参数等;

模型训练过程中会输出日志,可以查看并跟踪在模型训练过程中出现的问题;

4.模型转换:Coovally平台支持云边端转换,可转换成onnx、TensorRT格式;

5.模型部署:模型部署完成后即可上传图片,进行预测;

图片1预测结果:

图片2预测结果:

图片3预测结果:

6.模型下载与分享:用户可根据自己的需求在Coovally平台进行下载和分享。

综上,本次训练得到的YOLOv5s模型在数据集上表现良好,感兴趣的朋友可以私信我获取数据集。​​​​​​​​​​​​​​

相关推荐
若天明31 分钟前
深度学习-计算机视觉-微调 Fine-tune
人工智能·python·深度学习·机器学习·计算机视觉·ai·cnn
爱喝奶茶的企鹅32 分钟前
Ethan独立开发新品速递 | 2025-08-19
人工智能
J_bean41 分钟前
Spring AI Alibaba 项目接入兼容 OpenAI API 的大模型
人工智能·spring·大模型·openai·spring ai·ai alibaba
SelectDB1 小时前
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
数据库·人工智能·数据分析
倔强青铜三1 小时前
苦练Python第39天:海象操作符 := 的入门、实战与避坑指南
人工智能·python·面试
飞哥数智坊1 小时前
GPT-5 初战:我用 Windsurf,体验了“结对编程”式的AI开发
人工智能·windsurf
数据超市1 小时前
香港数据合集:建筑物、手机基站、POI、职住数据、用地类型
大数据·人工智能·智能手机·数据挖掘·数据分析
视觉语言导航2 小时前
哈工深无人机目标导航新基准!UAV-ON:开放世界空中智能体目标导向导航基准测试
人工智能·深度学习·无人机·具身智能
yzx9910132 小时前
AI心理助手开发文档
人工智能·深度学习·机器学习
图灵学术计算机论文辅导2 小时前
论文推荐|迁移学习+多模态特征融合
论文阅读·人工智能·深度学习·计算机网络·算法·计算机视觉·目标跟踪