基于YOLOv5s的无人机航拍输电线瓷瓶检测(附数据集与操作步骤)

本文主要内容:详细介绍了无人机航拍输电线瓷瓶检测的整个过程,从创建数据集到训练模型再到预测结果全部可视化操作与分析。

文末有数据集获取方式,请先看检测效果

现状

输电线路绝缘瓷瓶的检测主要依赖人工巡检。巡检人员需携带专业设备,攀爬至数十米高的输电塔,对绝缘瓷瓶进行逐一检查。但人工巡检耗时较长,安全风险高,精确度有限,无法实现对大规模输电线路的快速检测,难以发现细微的瓷瓶缺陷,容易导致漏检。

深度学习的应用正逐步改变传统的输电线路绝缘瓷瓶检测方式。

通过无人机搭载的高清摄像头捕捉实时图像,Coovally利用先进的机器视觉技术和成熟的解决方案,运用YOLO算法进行模型训练,可以对瓷瓶破损、污染及老化等异常状况快速识别。

数据集来源

公开数据集。此数据集中共包括263张照片。

操作步骤与结果分析

1.创建数据集:点击创建数据集,填入基本信息,上传图片数据压缩包和标签文件;

2.模型训练:选择任务类型、模型算法以及实验参数;

3.任务训练结束后,可查看任务是否成功及训练成功的指标数以及详细参数等;

模型训练过程中会输出日志,可以查看并跟踪在模型训练过程中出现的问题;

4.模型转换:Coovally平台支持云边端转换,可转换成onnx、TensorRT格式;

5.模型部署:模型部署完成后即可上传图片,进行预测;

图片1预测结果:

图片2预测结果:

图片3预测结果:

6.模型下载与分享:用户可根据自己的需求在Coovally平台进行下载和分享。

综上,本次训练得到的YOLOv5s模型在数据集上表现良好,感兴趣的朋友可以私信我获取数据集。​​​​​​​​​​​​​​

相关推荐
开源社5 分钟前
一场开源视角的AI会议即将在南京举办
人工智能·开源
FreeIPCC5 分钟前
谈一下开源生态对 AI人工智能大模型的促进作用
大数据·人工智能·机器人·开源
机器之心23 分钟前
全球十亿级轨迹点驱动,首个轨迹基础大模型来了
人工智能·后端
z千鑫24 分钟前
【人工智能】PyTorch、TensorFlow 和 Keras 全面解析与对比:深度学习框架的终极指南
人工智能·pytorch·深度学习·aigc·tensorflow·keras·codemoss
EterNity_TiMe_25 分钟前
【论文复现】神经网络的公式推导与代码实现
人工智能·python·深度学习·神经网络·数据分析·特征分析
机智的小神仙儿41 分钟前
Query Processing——搜索与推荐系统的核心基础
人工智能·推荐算法
AI_小站1 小时前
RAG 示例:使用 langchain、Redis、llama.cpp 构建一个 kubernetes 知识库问答
人工智能·程序人生·langchain·kubernetes·llama·知识库·rag
Doker 多克1 小时前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
Guofu_Liao1 小时前
Llama模型文件介绍
人工智能·llama
思通数科多模态大模型1 小时前
10大核心应用场景,解锁AI检测系统的智能安全之道
人工智能·深度学习·安全·目标检测·计算机视觉·自然语言处理·数据挖掘