快速学会一个算法,BERT

今天给大家介绍一个强大的算法模型,BERT

BERT(Bidirectional Encoder Representations from Transformers)是一种基于 Transformer 架构的深度学习模型,主要用于处理自然语言处理(NLP)问题。

BERT 由 Google AI 的研究团队在 2018 年提出,它通过双向捕获上下文信息的能力彻底改变了 NLP。与之前单向读取文本的模型不同,BERT 通过考虑左右上下文来理解句子中的单词。这种能力极大地增强了它对语言细微差别的理解,使其在各种 NLP 任务中非常有效。

BERT 如何工作

BERT 架构

BERT 建立在 Transformer 的架构之上,特别是利用了其编码器部分。

BERT 由多层自注意力和前馈神经网络组成。BERT 采用双向方法从句子中前后单词捕获上下文信息。

根据模型架构的规模,BERT 有四种类型的预训练版本。

  • BERT-Base(Cased / Un-Cased),12 层,768 个隐藏节点,12 个注意头,110M 个参数

  • BERT-Large(Cased / Un-Cased),24 层,1024 个隐藏节点,16 个注意头,340M 个参数

文本预处理

BERT 的开发人员添加了一组特定规则来表示模型的输入文本。

首先,每个输入嵌入都是 3 个嵌入的组合。

  • 位置嵌入

    BERT 学习并使用位置嵌入来表达单词在句子中的位置。添加这些是为了克服 Transformer 的局限性,因为与 RNN 不同,Transformer 无法捕获 "序列" 或 "顺序" 信息。

  • 片段嵌入

    BERT 还可以将句子对作为任务的输入。这就是为什么它会为第一句和第二句学习一个独特的嵌入,以帮助模型区分它们。在上面的例子中,所有标记为 的标记都属于句子 A( 也是如此)。

  • 标记嵌入

    这些是从 WordPiece 标记词汇表中为特定标记学习到的嵌入。

    需要注意的是,我们在第一个句子的开头,将 [CLS] 标记添加到输入单词标记中,在每个句子之后,添加 [SEP] 标记。

对于给定的标记,其输入表示是通过对相应的标记、段和位置嵌入进行求和来构建的。

预训练任务

BERT 在两个 NLP 任务上进行了预训练:

  • Masked Language Model (MLM)

    在这个任务中,模型的输入序列中随机选择一些单词被替换为一个特殊的 [MASK] 标记,模型的任务是预测这些被遮蔽的单词。这促使模型学习到更加深入的语言理解能力。

  • Next Sentence Prediction (NSP)

    在这个任务中,给定两个句子A 和 B,模型需要预测B是否是A的直接后续。这有助于模型理解句子间的关系,对于某些特定的任务(如问答系统)尤为重要。

微调

  • 过程

    预训练完成后,BERT 可以通过微调来适应具体的下游任务,例如情感分析、命名实体识别等。在微调阶段,通常保持预训练期间学到的参数不变,只对输出层进行修改,以适应特定任务的需求。

  • 优化

    通过微调,BERT 能够利用预训练中获得的丰富语言理解能力,迅速适应并提高在特定任务上的表现。

案例分享

下面是一个使用 BERT 来进行情绪分析的案例。

1.加载预训练的 BERT 模型

这里,我们使用 BERT 基础模型的无大小写预训练版本。

from transformers import BertModel  
from transformers import BertTokenizerFast  
  
bert = BertModel.from_pretrained('bert-base-uncased')  
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased', do_lower_case=True)  
2.加载数据集

这里,我们首先加载数据集并对其进行预处理。

import re  
import pandas as pd  
  
def preprocessor(text):  
    
  #convering text to lower case  
  text = text.lower()  
  
  #remove user mentions  
  text = re.sub(r'@[A-Za-z0-9]+','',text)             
    
  #remove hashtags  
  #text = re.sub(r'#[A-Za-z0-9]+','',text)           
    
  #remove links  
  text = re.sub(r'http\S+', '', text)    
    
  #split token to remove extra spaces  
  tokens = text.split()  
    
  #join tokens by space  
  return " ".join(tokens)  
  
df = pd.read_csv('Sentiment.csv')  
# perform text cleaning  
df['clean_text']= df['text'].apply(preprocessor)  
# save cleaned text and labels to a variable  
text   = df['clean_text'].values  
labels = df['sentiment'].values  
print(text[50:55])

接下来,准备模型的输入输出数据。

#importing label encoder  
from sklearn.preprocessing import LabelEncoder  
#define label encoder  
le = LabelEncoder()  
#fit and transform target strings to a numbers  
labels = le.fit_transform(labels)  
print(le.classes_)  
print(labels)  
  
# library for progress bar  
from tqdm import notebook  
# create an empty list to save integer sequence  
sent_id = []  
# iterate over each tweet  
for i in notebook.tqdm(range(len(text))):  
    
  encoded_sent = tokenizer.encode(text[i],                        
                                  add_special_tokens = True,      
                                  max_length = 25,  
                                  truncation = True,           
                                  pad_to_max_length='right')       
  # saving integer sequence to a list  
  sent_id.append(encoded_sent)  
  
attention_masks = []  
for sent in sent_id:  
  att_mask = [int(token_id > 0) for token_id in sent]  
  attention_masks.append(att_mask)  
  
# Use train_test_split to split our data into train and validation sets  
from sklearn.model_selection import train_test_split  
  
# Use 90% for training and 10% for validation.  
train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(sent_id, labels, random_state=2018, test_size=0.1, stratify=labels)  
  
# Do the same for the masks.  
train_masks, validation_masks, _, _ = train_test_split(attention_masks, labels, random_state=2018, test_size=0.1, stratify=labels)  
  
import torch  
train_inputs = torch.tensor(train_inputs)  
validation_inputs = torch.tensor(validation_inputs)  
train_labels = torch.tensor(train_labels)  
validation_labels = torch.tensor(validation_labels)  
train_masks = torch.tensor(train_masks)  
validation_masks = torch.tensor(validation_masks)  
  
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler  
  
# For fine-tuning BERT on a specific task, the authors recommend a batch size of 16 or 32.  
# define a batch size  
batch_size = 32  
  
# Create the DataLoader for our training set.  
#Dataset wrapping tensors.  
train_data = TensorDataset(train_inputs, train_masks, train_labels)  
  
#define a sampler for sampling the data during training  
  #random sampler samples randomly from a dataset   
  #sequential sampler samples sequentially, always in the same order  
train_sampler = RandomSampler(train_data)  
  
#represents a iterator over a dataset. Supports batching, customized data loading order  
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=batch_size)  
  
# Create the DataLoader for our validation set.  
#Dataset wrapping tensors.  
validation_data = TensorDataset(validation_inputs, validation_masks, validation_labels)  
  
#define a sequential sampler   
#This samples data in a sequential order  
validation_sampler = SequentialSampler(validation_data)  
  
#create a iterator over the dataset  
validation_dataloader = DataLoader(validation_data, sampler=validation_sampler, batch_size=batch_size)

3.定义模型架构

#importing nn module  
import torch.nn as nn  
  
class classifier(nn.Module):  
  
    #define the layers and wrappers used by model  
    def __init__(self, bert):  
        
      #constructor  
      super(classifier, self).__init__()  
  
      #bert model  
      self.bert = bert   
  
      # dense layer 1  
      self.fc1 = nn.Linear(768,512)  
        
      #dense layer 2 (Output layer)  
      self.fc2 = nn.Linear(512,3)  
        
      #dropout layer  
      self.dropout = nn.Dropout(0.1)  
  
      #relu activation function  
      self.relu =  nn.ReLU()  
  
      #softmax activation function  
      self.softmax = nn.LogSoftmax(dim=1)  
  
    #define the forward pass  
    def forward(self, sent_id, mask):  
  
      #pass the inputs to the model    
      all_hidden_states, cls_hidden_state = self.bert(sent_id, attention_mask=mask, return_dict=False)  
        
      #pass CLS hidden state to dense layer  
      x = self.fc1(cls_hidden_state)  
  
      #Apply ReLU activation function  
      x = self.relu(x)  
  
      #Apply Dropout  
      x = self.dropout(x)  
  
      #pass input to the output layer  
      x = self.fc2(x)  
        
      #apply softmax activation  
      x = self.softmax(x)  
  
      return x  
   
device="cuda:0"  
for param in bert.parameters():  
    param.requires_grad = False  
#create the model  
model = classifier(bert)  
  
#push the model to GPU, if available  
model = model.to(device)

4.定义优化器和损失函数

# Adam optimizer  
optimizer = torch.optim.Adam(model.parameters(), lr = 0.001)  
  
import numpy as np  
from sklearn.utils.class_weight import compute_class_weight  
#class_weights = compute_class_weight('balanced', np.unique(labels), y=labels)  
class_weights = compute_class_weight(class_weight = "balanced", classes= np.unique(labels), y= labels)  
print("Class Weights:",class_weights)  
  
# converting a list of class weights to a tensor  
weights= torch.tensor(class_weights,dtype=torch.float)  
# transfer to GPU  
weights = weights.to(device)  
# define the loss function  
cross_entropy  = nn.NLLLoss(weight=weights) 

5.模型训练与评估

import time  
import datetime  
# compute time in hh:mm:ss  
def format_time(elapsed):  
    # round to the nearest second.  
    elapsed_rounded = int(round((elapsed)))  
    # format as hh:mm:ss  
    return str(datetime.timedelta(seconds = elapsed_rounded))

import time  
#define a function for training the model  
def train():  
    
  print("\nTraining.....")    
    
  #set the model on training phase - Dropout layers are activated  
  model.train()  
  
  #record the current time  
  t0 = time.time()  
  
  #initialize loss and accuracy to 0  
  total_loss, total_accuracy = 0, 0  
    
  #Create a empty list to save the model predictions  
  total_preds=[]  
    
  #for every batch  
  for step,batch in enumerate(train_dataloader):  
      
    # Progress update after every 40 batches.  
    if step % 40 == 0 and not step == 0:  
        
      # Calculate elapsed time in minutes.  
      elapsed = format_time(time.time() - t0)  
              
      # Report progress.  
      print('  Batch {:>5,}  of  {:>5,}.    Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))  
  
    #push the batch to gpu  
    batch = tuple(t.to(device) for t in batch)  
  
    #unpack the batch into separate variables  
    # `batch` contains three pytorch tensors:  
    #   [0]: input ids   
    #   [1]: attention masks  
    #   [2]: labels   
    sent_id, mask, labels = batch  
  
    # Always clear any previously calculated gradients before performing a  
    # backward pass. PyTorch doesn't do this automatically.   
    model.zero_grad()          
  
    # Perform a forward pass. This returns the model predictions  
    preds = model(sent_id, mask)  
  
    #compute the loss between actual and predicted values  
    loss =  cross_entropy(preds, labels)  
  
    # Accumulate the training loss over all of the batches so that we can  
    # calculate the average loss at the end. `loss` is a Tensor containing a  
    # single value; the `.item()` function just returns the Python value   
    # from the tensor.  
    total_loss = total_loss + loss.item()  
  
    # Perform a backward pass to calculate the gradients.  
    loss.backward()  
  
    # Update parameters and take a step using the computed gradient.  
    # The optimizer dictates the "update rule"--how the parameters are  
    # modified based on their gradients, the learning rate, etc.  
    optimizer.step()  
  
    #The model predictions are stored on GPU. So, push it to CPU  
    preds=preds.detach().cpu().numpy()  
  
    #Accumulate the model predictions of each batch  
    total_preds.append(preds)  
  
  #compute the training loss of a epoch  
  avg_loss     = total_loss / len(train_dataloader)  
    
  #The predictions are in the form of (no. of batches, size of batch, no. of classes).  
  #So, reshaping the predictions in form of (number of samples, no. of classes)  
  total_preds  = np.concatenate(total_preds, axis=0)  
  
  #returns the loss and predictions  
  return avg_loss, total_preds

#define a function for evaluating the model  
def evaluate():  
    
  print("\nEvaluating.....")  
    
  #set the model on training phase - Dropout layers are deactivated  
  model.eval()  
  
  #record the current time  
  t0 = time.time()  
  
  #initialize the loss and accuracy to 0  
  total_loss, total_accuracy = 0, 0  
    
  #Create a empty list to save the model predictions  
  total_preds = []  
  
  #for each batch    
  for step,batch in enumerate(validation_dataloader):  
      
    # Progress update every 40 batches.  
    if step % 40 == 0 and not step == 0:  
        
      # Calculate elapsed time in minutes.  
      elapsed = format_time(time.time() - t0)  
              
      # Report progress.  
      print('  Batch {:>5,}  of  {:>5,}.    Elapsed: {:}.'.format(step, len(validation_dataloader), elapsed))  
  
    #push the batch to gpu  
    batch = tuple(t.to(device) for t in batch)  
  
    #unpack the batch into separate variables  
    # `batch` contains three pytorch tensors:  
    #   [0]: input ids   
    #   [1]: attention masks  
    #   [2]: labels          
    sent_id, mask, labels = batch  
  
    #deactivates autograd  
    with torch.no_grad():  
        
      # Perform a forward pass. This returns the model predictions  
      preds = model(sent_id, mask)  
  
      #compute the validation loss between actual and predicted values  
      loss = cross_entropy(preds,labels)  
  
      # Accumulate the validation loss over all of the batches so that we can  
      # calculate the average loss at the end. `loss` is a Tensor containing a  
      # single value; the `.item()` function just returns the Python value   
      # from the tensor.        
      total_loss = total_loss + loss.item()  
  
      #The model predictions are stored on GPU. So, push it to CPU  
      preds=preds.detach().cpu().numpy()  
  
      #Accumulate the model predictions of each batch  
      total_preds.append(preds)  
  
  #compute the validation loss of a epoch  
  avg_loss = total_loss / len(validation_dataloader)   
  
  #The predictions are in the form of (no. of batches, size of batch, no. of classes).  
  #So, reshaping the predictions in form of (number of samples, no. of classes)  
  total_preds  = np.concatenate(total_preds, axis=0)  
  
  return avg_loss, total_preds

接下来,对模型进行训练。

#Assign the initial loss to infinite  
best_valid_loss = float('inf')  
  
#create a empty list to store training and validation loss of each epoch  
train_losses=[]  
valid_losses=[]  
  
epochs = 5  
  
  
#for each epoch  
for epoch in range(epochs):  
       
    print('\n....... epoch {:} / {:} .......'.format(epoch + 1, epochs))  
      
    #train model  
    train_loss, _ = train()  
      
    #evaluate model  
    valid_loss, _ = evaluate()  
      
    #save the best model  
    if valid_loss < best_valid_loss:  
        best_valid_loss = valid_loss  
        torch.save(model.state_dict(), 'saved_weights.pt')  
      
    #accumulate training and validation loss  
    train_losses.append(train_loss)  
    valid_losses.append(valid_loss)  
      
    print(f'\nTraining Loss: {train_loss:.3f}')  
    print(f'Validation Loss: {valid_loss:.3f}')  
  
print("")  
print("Training complete!")

接下来,对模型进行评估。

# load weights of best model  
path='saved\_weights.pt'  
model.load\_state\_dict(torch.load(path))  
# get the model predictions on the validation data  
# returns 2 elements- Validation loss and Predictions  
valid\_loss, preds = evaluate()  
print(valid\_loss)  
  
from sklearn.metrics import classification\_report  
# Converting the log(probabities) into a classes  
# Choosing index of a maximum value as class  
y\_pred = np.argmax(preds,axis=1)  
# actual labels  
y\_true = validation\_labels  
print(classification\_report(y\_true,y\_pred))

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

四、AI大模型商业化落地方案

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

相关推荐
小孟Java攻城狮1 小时前
leetcode-不同路径问题
算法·leetcode·职场和发展
查理零世1 小时前
算法竞赛之差分进阶——等差数列差分 python
python·算法·差分
盼小辉丶3 小时前
TensorFlow深度学习实战——情感分析模型
深度学习·神经网络·tensorflow
好评笔记3 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云4 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
小猿_004 小时前
C语言程序设计十大排序—插入排序
c语言·算法·排序算法
AI街潜水的八角4 小时前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
叫我:松哥5 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪6 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山6 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造