GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系

简介

近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4 是 OpenAI 推出的新一代大模型,而 GPT-4O 和 GPT-4O-mini 是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较 GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系,帮助开发者更好地选择适合的模型。

GPT-4 是 OpenAI 发布的第四代通用预训练模型,具备强大的生成和理解能力,适用于多种复杂场景。
GPT-4O (GPT-4 Optimized)是 GPT-4 的优化版,注重效率和性能,适合需要平衡性能与资源的应用。
GPT-4O-mini 是更轻量级的版本,设计初衷是为低算力设备和场景提供高效的解决方案。

GPT-4、GPT-4O 和 GPT-4O-mini 的分类对比

属性 GPT-4 GPT-4O GPT-4O-mini
发布年份 2023 2023 2023
模型大小 数千亿参数 经过剪枝和优化,参数减少 参数较少,适合低算力设备
适用场景 高算力服务器和复杂应用场景 资源受限的中等复杂场景 边缘设备或移动应用
推理速度 中等 快速 极快
推理成本 中等
多任务能力 强,适合多领域任务 稍弱于GPT-4,但表现优良 偏向于简单任务
训练数据 大规模语料,覆盖多领域 经过优化的数据子集 选取轻量级的关键数据集
能耗 中等
模型鲁棒性 强,能处理复杂和不确定的输入 好,优化后的模型表现稳定 较好,适合特定场景
Azure OpenAI 报价 $0.03/1000 tokens (Prompt),$0.06/1000 tokens (Completion) $0.025/1000 tokens (Prompt),$0.01/1000 tokens (Completion) $0.00015/1000 tokens (Prompt),$0.0006/1000 tokens (Completion)

总结

GPT-4 适用于大型复杂任务的首选,具有强大的泛化能力和多任务处理能力,但其计算成本较高,适合对资源和性能要求较高的场景。GPT-4O 通过优化算法,在减少计算资源需求的同时,保持了较高的性能和鲁棒性,是对效率要求高且预算受限的应用的理想选择。GPT-4O-mini 则是一个轻量级解决方案,特别适合低功耗设备和对模型规模要求较小的场景,比如移动应用和嵌入式系统。

开发者在选择模型时,应根据具体应用场景和可用的计算资源来权衡不同版本的 GPT 模型,以实现最佳的性能与成本平衡。

相关推荐
孤独且没人爱的纸鹤14 分钟前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
Guofu_Liao8 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
老艾的AI世界12 小时前
AI翻唱神器,一键用你喜欢的歌手翻唱他人的曲目(附下载链接)
人工智能·深度学习·神经网络·机器学习·ai·ai翻唱·ai唱歌·ai歌曲
hunteritself14 小时前
ChatGPT高级语音模式正在向Web网页端推出!
人工智能·gpt·chatgpt·openai·语音识别
sp_fyf_202415 小时前
【大语言模型】ACL2024论文-19 SportsMetrics: 融合文本和数值数据以理解大型语言模型中的信息融合
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
Doker 多克16 小时前
Spring AI 框架使用的核心概念
人工智能·spring·chatgpt
龙的爹233317 小时前
论文翻译 | RECITATION-AUGMENTED LANGUAGE MODELS
人工智能·语言模型·自然语言处理·prompt·gpu算力
sp_fyf_202417 小时前
【大语言模型】ACL2024论文-18 MINPROMPT:基于图的最小提示数据增强用于少样本问答
人工智能·深度学习·神经网络·目标检测·机器学习·语言模型·自然语言处理
Guofu_Liao20 小时前
大语言模型中Softmax函数的计算过程及其参数描述
人工智能·语言模型·自然语言处理
曼城周杰伦21 小时前
自然语言处理:第六十二章 KAG 超越GraphRAG的图谱框架
人工智能·pytorch·神经网络·自然语言处理·chatgpt·nlp·gpt-3