GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系

简介

近年来,人工智能技术飞速发展,特别是在自然语言处理领域。GPT-4 是 OpenAI 推出的新一代大模型,而 GPT-4O 和 GPT-4O-mini 是其优化版本,专门为不同应用场景和计算资源需求进行调整。在这篇文章中,我们将详细比较 GPT-4、GPT-4O 和 GPT-4O-mini 的区别与联系,帮助开发者更好地选择适合的模型。

GPT-4 是 OpenAI 发布的第四代通用预训练模型,具备强大的生成和理解能力,适用于多种复杂场景。
GPT-4O (GPT-4 Optimized)是 GPT-4 的优化版,注重效率和性能,适合需要平衡性能与资源的应用。
GPT-4O-mini 是更轻量级的版本,设计初衷是为低算力设备和场景提供高效的解决方案。

GPT-4、GPT-4O 和 GPT-4O-mini 的分类对比

属性 GPT-4 GPT-4O GPT-4O-mini
发布年份 2023 2023 2023
模型大小 数千亿参数 经过剪枝和优化,参数减少 参数较少,适合低算力设备
适用场景 高算力服务器和复杂应用场景 资源受限的中等复杂场景 边缘设备或移动应用
推理速度 中等 快速 极快
推理成本 中等
多任务能力 强,适合多领域任务 稍弱于GPT-4,但表现优良 偏向于简单任务
训练数据 大规模语料,覆盖多领域 经过优化的数据子集 选取轻量级的关键数据集
能耗 中等
模型鲁棒性 强,能处理复杂和不确定的输入 好,优化后的模型表现稳定 较好,适合特定场景
Azure OpenAI 报价 0.03/1000 tokens (Prompt),0.06/1000 tokens (Completion) 0.025/1000 tokens (Prompt),0.01/1000 tokens (Completion) 0.00015/1000 tokens (Prompt),0.0006/1000 tokens (Completion)

总结

GPT-4 适用于大型复杂任务的首选,具有强大的泛化能力和多任务处理能力,但其计算成本较高,适合对资源和性能要求较高的场景。GPT-4O 通过优化算法,在减少计算资源需求的同时,保持了较高的性能和鲁棒性,是对效率要求高且预算受限的应用的理想选择。GPT-4O-mini 则是一个轻量级解决方案,特别适合低功耗设备和对模型规模要求较小的场景,比如移动应用和嵌入式系统。

开发者在选择模型时,应根据具体应用场景和可用的计算资源来权衡不同版本的 GPT 模型,以实现最佳的性能与成本平衡。

相关推荐
AI360labs_atyun2 小时前
2025 高考:AI 都在哪些地方发挥了作用
人工智能·科技·ai·高考
AlfredZhao3 小时前
曾经风光无限的 Oracle DBA 已经落伍了吗?
ai·vector·embedding·onnx·hnsw·ivf
m0_634448894 小时前
图上合成:用于大型语言模型持续预训练的知识合成数据生成
人工智能·语言模型·自然语言处理
张铁牛4 小时前
3. LangChain4j-RAG,实现简单的text-sql功能
ai·langchain4j
何中应5 小时前
第一个人工智能(AI)问答Demo
java·人工智能·语言模型
zhangts209 小时前
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
人工智能·语言模型
lgbisha9 小时前
华为云Flexus+DeepSeek征文|体验华为云ModelArts快速搭建Dify-LLM应用开发平台并创建联网大模型
人工智能·ai·华为云
HyperAI超神经10 小时前
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
人工智能·深度学习·机器学习·语言模型·自然语言处理·ai for science·蛋白质结构
UQI-LIUWJ11 小时前
论文笔记:LANGUAGE MODELS REPRESENT SPACE AND TIME
人工智能·语言模型·自然语言处理
1569911 小时前
大语言模型原理与书生大模型提示词工程实践-学习笔记
笔记·学习·语言模型