计算机视觉四大任务模型汇总

计算机视觉中有四大核心任务:

1-分类任务、2-目标检测任务、3-目标分割任务 和 4-关键点检测任务

文章1:

一文读懂计算机视觉4大任务

文章2:

图像的目标分割任务:语义分割和实例分割

不同任务之间相关但不完全相同,因此不同的任务最好选择相应的模型,话不多说,看表:

注:表中github链接并不一定是模型的正式版本,只是本文用于展示模型的网络结构和应用

1-分类任务模型

|--------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 序号 | 模型 | ipynb模型的github链接 |
| 1 | LeNet | https://github.com/udacity/CarND-LeNet-Lab |
| 2 | AlexNet | https://github.com/Fannjh/AlexNet-TF |
| 3 | VGGNet | https://github.com/Fozan-Talat/Image-Classifier-VGG |
| 4 | GoogLeNet | GitHub - AbdelrahmanShehata482/CNN-project: CNN_Project (py and ipynb code ) (Vgg16-GoogleNet from scratch) |
| 5 | ResNet | GitHub - ry/tensorflow-resnet: ResNet model in TensorFlow |
| 6 | DenseNet | GitHub - titu1994/DenseNet: DenseNet implementation in Keras |
| 7 | MobileNet | https://github.com/Zehaos/MobileNet |
| 8 | EfficientNet | https://github.com/qubvel/efficientnet |
| 9 | SVM(支持向量机) | https://github.com/Think103/- |

2-目标检测任务模型

|--------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 序号 | 模型 | ipynb模型的github链接 |
| 1 | R-CNN(已过时) | |
| 2 | Fast R-CNN(已过时) | |
| 3 | Faster R-CNN | GitHub - kbardool/Keras-frcnn: Keras Implementation of Faster R-CNN |
| 4 | YOLO | https://github.com/ultralytics/yolov5 |
| 5 | SSD | https://github.com/lufficc/SSD |
| 6 | RetinaNet | https://github.com/fizyr/keras-retinanet |
| 7 | Mask R-CNN | https://github.com/SanmathiK/PedNet |
| 8 | EfficientDet | GitHub - xuannianz/EfficientDet: EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow |
| 9 | CenterNet | https://github.com/xingyizhou/CenterNet |

3-目标分割任务模型

|--------|----------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 序号 | 分割类型 | 模型 | ipynb模型的github链接 |
| 1 | 语义分割 | FCN | GitHub - wkentaro/pytorch-fcn: PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.) |
| 2 | 语义分割 | U-Net | GitHub - yingkaisha/keras-unet-collection: The Tensorflow, Keras implementation of U-net, V-net, U-net++, UNET 3+, Attention U-net, R2U-net, ResUnet-a, U^2-Net, TransUNET, and Swin-UNET with optional ImageNet-trained backbones. |
| 3 | 语义分割 | DeepLab | GitHub - fregu856/deeplabv3: PyTorch implementation of DeepLabV3, trained on the Cityscapes dataset. |
| 4 | 语义分割 | PSPNet | GitHub - Lextal/pspnet-pytorch: PyTorch implementation of PSPNet segmentation network |
| 5 | 语义分割 | SegNet | GitHub - preddy5/segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation |
| 6 | 语义分割 | HRNet | GitHub - HRNet/HRNet-Image-Classification: Train the HRNet model on ImageNet |
| 7 | 实例分割 | Mask R-CNN | https://github.com/saikoneru/Instance-Segementation |
| 8 | 实例分割 | PANet | https://github.com/kaixin96/PANet |
| 9 | 实例分割 | YOLACT | https://github.com/dbolya/yolact |
| 10 | 实例分割 | SOLO | https://github.com/iambankaratharva/SOLO-Instance-Segmentation |
| 11 | 实例分割 | PointRend | https://github.com/zsef123/PointRend-PyTorch |

4-关键点检测任务模型

|--------|----------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 序号 | 检测目标 | 模型 | ipynb模型的github链接 |
| 1 | 人脸 | Dlib | GitHub - davisking/dlib: A toolkit for making real world machine learning and data analysis applications in C++ |
| 2 | 人脸 | MTCNN | GitHub - ipazc/mtcnn: MTCNN face detection implementation for TensorFlow, as a PIP package. |
| 3 | 人脸 | FaceBoxes | GitHub - zisianw/FaceBoxes.PyTorch: A PyTorch Implementation of FaceBoxes |
| 4 | 人脸 | PRNet | GitHub - yfeng95/PRNet: Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network (ECCV 2018) |
| 5 | 人体 | OpenPose | GitHub - Hzzone/pytorch-openpose: pytorch implementation of openpose including Hand and Body Pose Estimation. |
| 6 | 人体 | HRNet | https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation |
| 7 | 人体 | CPM | GitHub - PanZiqiAI/CPM-Clothes-Keypoints-Detection: Convolutional Pose Machine implemented for clothes key points detection. |
| 8 | 人体 | Mask R-CNN with Keypoint Detection Branch | GitHub - chrispolo/Keypoints-of-humanpose-with-Mask-R-CNN: Use the Mask RCNN for the human pose estimation |
| 9 | 人体 | AlphaPose | GitHub - Amanbhandula/AlphaPose: AlphaPose Implementation in Pytorch along with the pre-trained weights |
| 10 | 人体 | MoveNet | GitHub - fire717/movenet.pytorch: A Pytorch implementation of MoveNet from Google. Include training code and pre-trained model. |

需要说明,上表中模型名称并不单指某个模型,而是一类模型统称,如YOLO模型实际包括了yolov1~yolov10的10个系列。

相关推荐
数据饕餮18 分钟前
Pytorch深度学习框架实战教程-番外篇05-Pytorch全连接层概念定义、工作原理和作用
人工智能·pytorch·深度学习
FIT2CLOUD飞致云33 分钟前
MaxKB+合合信息TextIn:通过API实现PDF扫描件的文档审核
人工智能·开源
算家计算1 小时前
OpenAI 全新开源模型 GPT-OSS-20B本地部署教程:16GB显存跑透128K上下文
人工智能·开源·openai
墨尘游子1 小时前
2- Python 网络爬虫 — 如何精准提取网页数据?XPath、Beautiful Soup、pyquery 与 parsel 实战指南
人工智能·网络爬虫·知识图谱·机器翻译
lll482331 小时前
数字图像处理4
人工智能·计算机视觉
大海的John2 小时前
FinQ4Cn: 基于 MCP 协议的中国 A 股量化分析
人工智能
霍格沃兹测试开发学社测试人社区2 小时前
Dify入门指南(2):5 分钟部署 Dify:云服务 vs 本地 Docker
人工智能·低代码
西猫雷婶2 小时前
scikit-learn/sklearn学习|岭回归解读
开发语言·人工智能·机器学习·支持向量机·回归·scikit-learn·sklearn
AI导航猿2 小时前
能和MJ掰手腕?免费开源的Krea Dev,我用日常场景实测了一整天|AI导航猿
人工智能
CoderLiu2 小时前
AI提示词工程优化指南:8个技巧,释放大语言模型的全部潜力
前端·人工智能·ai编程