Spark-累加器源码分析

一、累加器使用

源码中给的例子是:org.apache.spark.examples.AccumulatorMetricsTest

此示例显示了如何针对累加器源注册累加器,创建一个简单的RDD,在Task中对累加器递增,结果与累加器的值一起输出到Driver中的stdout。为了可以看到效果,我们对累加过程做了些调整

其中我们关心的代码如下,即创建、累加和使用

Scala 复制代码
val accLong = sc.longAccumulator("my-long-metric")
val accDouble = sc.doubleAccumulator("my-double-metric")
val accCollection = sc.collectionAccumulator[String]("my-collection-metric")

val num = if (args.length > 0) args(0).toInt else 1000
val accumulatorTest = sc.parallelize(1 to num).foreach(thisNum=> {
  accLong.add(3)
  accDouble.add(1.1)
  accDouble.add(2.1)
  accCollection.add("num:"+thisNum)
})

println("*** Long accumulator (my-long-metric): " + accLong.value)
println("*** Long accumulator (my-long-metric): count:" + accLong.count)
println("*** Long accumulator (my-long-metric): sum:" + accLong.sum)
println("*** Long accumulator (my-long-metric): avg:" + accLong.avg)
println("*** Double accumulator (my-double-metric): " + accDouble.value)
println("*** Double accumulator (my-double-metric): count:" + accDouble.count)
println("*** Double accumulator (my-double-metric): sum:" + accDouble.sum)
println("*** Double accumulator (my-double-metric): avg:" + accDouble.avg)
println("*** Collection accumulator (my-collection-metric): " + accCollection.value)

输出结果为:

*** Long accumulator (my-long-metric): 3000

*** Long accumulator (my-long-metric): count:1000

*** Long accumulator (my-long-metric): sum:3000

*** Long accumulator (my-long-metric): avg:3.0

*** Double accumulator (my-double-metric): 3199.9999999998868

*** Double accumulator (my-double-metric): count:2000

*** Double accumulator (my-double-metric): sum:3199.9999999998868

*** Double accumulator (my-double-metric): avg:1.5999999999999435

*** Collection accumulator (my-collection-metric): [num:1, num:2, num:3, num:4, num:5, num:6, ......,num:999, num:1000]

二、创建累加器

我们拿最常用的longAccumulator来看下:

1、SparkContext

创建并注册一个Long累加器,它从0开始,通过"add"累加输入

Scala 复制代码
  def longAccumulator(name: String): LongAccumulator = {
    val acc = new LongAccumulator
    register(acc, name)
    acc
  }

  def register(acc: AccumulatorV2[_, _], name: String): Unit = {
    //调用AccumulatorV2的register
    acc.register(this, name = Option(name))
  }

2、AccumulatorV2

累加器的基类,可以累加"IN"类型的输入,并产生"OUT"类型的输出

它是LongAccumulator、DoubleAccumulator、CollectionAccumulator的父类

Scala 复制代码
abstract class AccumulatorV2[IN, OUT] extends Serializable {

  private[spark] def register(
      sc: SparkContext,
      name: Option[String] = None,
      countFailedValues: Boolean = false): Unit = {
    if (this.metadata != null) {
      throw new IllegalStateException("Cannot register an Accumulator twice.")
    }
    this.metadata = AccumulatorMetadata(AccumulatorContext.newId(), name, countFailedValues)
    AccumulatorContext.register(this)
    sc.cleaner.foreach(_.registerAccumulatorForCleanup(this))
  }

    //...............

//内部类
private[spark] object AccumulatorContext extends Logging {

  //此全局映射保存在Driver上创建的原始累加器对象。它保留了对这些对象的弱引用,这样一旦RDD和引用它们的用户代码被清理干净,累加器就可以被垃圾回收。
  private val originals = new ConcurrentHashMap[Long, jl.ref.WeakReference[AccumulatorV2[_, _]]]

  //注册在Driver上创建的[[AcumulatorV2]],以便在Executor上使用。
  //此处注册的所有累加器稍后都可以用作跨多个Task累加部分值的容器。这就是org.apache.spark.scheduler。DAGScheduler上来做的。
  //注意:如果在此处注册了累加器,则还应将其注册到活动上下文清理器中进行清理,以避免内存泄漏。
  //如果已经注册了具有相同ID的[[AcumulatorV2]],这只会覆盖它,而不会做任何事情。我们永远不会重复注册同一个累加器
  def register(a: AccumulatorV2[_, _]): Unit = {
    originals.putIfAbsent(a.id, new jl.ref.WeakReference[AccumulatorV2[_, _]](a))
  }

  //...............
}

//用于计算64位整数的求和、计数和平均值的[[AcumulatorV2累加器]]
class LongAccumulator extends AccumulatorV2[jl.Long, jl.Long] {

  private var _sum = 0L
  private var _count = 0L

  override def add(v: jl.Long): Unit = {
    _sum += v
    _count += 1
  }

  def count: Long = _count

  def sum: Long = _sum

  def avg: Double = _sum.toDouble / _count

  override def value: jl.Long = _sum

  override def merge(other: AccumulatorV2[jl.Long, jl.Long]): Unit = other match {
    case o: LongAccumulator =>
      _sum += o.sum
      _count += o.count
    case _ =>
     //.....抛异常....
  }

  //...............
}

//用于计算双精度浮点数的求和、计数和平均值的累加器
class DoubleAccumulator extends AccumulatorV2[jl.Double, jl.Double] {

  private var _sum = 0.0
  private var _count = 0L

  override def add(v: jl.Double): Unit = {
    _sum += v
    _count += 1
  }

  def count: Long = _count

  def sum: Double = _sum

  def avg: Double = _sum / _count

  override def value: jl.Double = _sum

  override def merge(other: AccumulatorV2[jl.Double, jl.Double]): Unit = other match {
    case o: DoubleAccumulator =>
      _sum += o.sum
      _count += o.count
    case _ =>
     //.....抛异常....
  }

  //...............
}

//用于收集元素列表的[[AcumulatorV2累加器]]
class CollectionAccumulator[T] extends AccumulatorV2[T, java.util.List[T]] {

  private var _list: java.util.List[T] = _

  override def merge(other: AccumulatorV2[T, java.util.List[T]]): Unit = other match {
    case o: CollectionAccumulator[T] => this.synchronized(getOrCreate.addAll(o.value))
    case _ => //.....抛异常....
  }

  private def getOrCreate = {
    _list = Option(_list).getOrElse(new java.util.ArrayList[T]())
    _list
  }

  override def value: java.util.List[T] = this.synchronized {
    java.util.Collections.unmodifiableList(new ArrayList[T](getOrCreate))
  }

  //...............
}

}

三、实现累加

从AccumulatorV2中的方法我们可以知道最终是在DAGScheduler调用它的merge方法来实现的累加,下面我们详细看下在什么位置:

Scala 复制代码
  private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
    //当任务完成后会调用handleTaskCompletion
    case completion: CompletionEvent =>
      dagScheduler.handleTaskCompletion(completion)

  }


  private[scheduler] def handleTaskCompletion(event: CompletionEvent): Unit = {
    val task = event.task
    val stageId = task.stageId

    //........省略........

    //确保在任何其他处理发生之前更新任务的累加器,以便我们可以在更新任何作业或阶段之前发布任务结束事件。
    event.reason match {
      case Success =>
        task match {
          case rt: ResultTask[_, _] =>
            val resultStage = stage.asInstanceOf[ResultStage]
            resultStage.activeJob match {
              case Some(job) =>
                // 对于每个结果任务,只更新一次累加器
                if (!job.finished(rt.outputId)) {
                  updateAccumulators(event)
                }
              case None => // 如果任务的作业已完成,则忽略更新
            }
          case _ =>
            updateAccumulators(event)
        }
      case _: ExceptionFailure | _: TaskKilled => updateAccumulators(event)
      case _ =>
    }

    //........省略........

  }

  private def updateAccumulators(event: CompletionEvent): Unit = {
    val task = event.task
    val stage = stageIdToStage(task.stageId)

    event.accumUpdates.foreach { updates =>
      val id = updates.id
      try {
        // 在Driver上找到相应的累加器并更新
        val acc: AccumulatorV2[Any, Any] = AccumulatorContext.get(id) match {
          case Some(accum) => accum.asInstanceOf[AccumulatorV2[Any, Any]]
          case None =>
            throw new SparkException(s"attempted to access non-existent accumulator $id")
        }
        acc.merge(updates.asInstanceOf[AccumulatorV2[Any, Any]])

      } catch {
        //......异常处理........
      }
    }
  }

四、总结

1、通过SparkContext创建累加器(LongAccumulator、DoubleAccumulator、CollectionAccumulator)

2、在Driver端注册累加器(累加器必须先注册再使用)(其实就是向全局Map中放入了该累加器)

3、累加器从0开始计数,在每层Stage对应的Task结束时通过merge方法更新Driver端的累计器

4、当一个Job跑完后我们就可以使用累加器变量了,如果是数值型可以拿到总和、累加次数、平均值,如果时集合型可以拿到一个数据序列

相关推荐
lucky_syq9 分钟前
Hive SQL和Spark SQL的区别?
hive·sql·spark
m0_7482448319 分钟前
StarRocks 排查单副本表
大数据·数据库·python
NiNg_1_23420 分钟前
Hadoop中MapReduce过程中Shuffle过程实现自定义排序
大数据·hadoop·mapreduce
B站计算机毕业设计超人25 分钟前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
李洋-蛟龙腾飞公司30 分钟前
HarmonyOS Next 应用元服务开发-分布式数据对象迁移数据文件资产迁移
分布式·华为·harmonyos
沛沛老爹35 分钟前
什么是 DevOps 自动化?
大数据·ci/cd·自动化·自动化运维·devops
喝醉酒的小白2 小时前
Elasticsearch(ES)监控、巡检及异常指标处理指南
大数据·elasticsearch·搜索引擎
lucky_syq2 小时前
Spark和Hadoop之间的区别
大数据·hadoop·spark
技术路上的苦行僧3 小时前
分布式专题(10)之ShardingSphere分库分表实战指南
分布式·shardingsphere·分库分表
GitCode官方4 小时前
GitCode 光引计划投稿 | GoIoT:开源分布式物联网开发平台
分布式·开源·gitcode