用Python与OpenCV的实践:实时面部对称性分析

目录

思路分析

整体代码

效果展示

总结


在当今计算机视觉领域,人脸识别和分析技术得到了广泛应用。无论是安全验证、社交媒体应用,还是美学研究,人脸特征的提取和分析都是关键技术之一。在这篇博客中,我们将深入探讨一个有趣的项目:实时面部对称性分析。通过使用Python语言、OpenCV库和dlib库,实现一个能够实时检测人脸并评估其对称性的程序。

思路分析

  • 导入库

    • 使用cv2处理图像和视频流,dlib用于人脸检测和特征点提取,numpy进行数值计算,PIL用于绘制中文文本。
  • 加载模型

    • 使用dlib加载人脸检测器和特征点预测器,特征点预测器利用68个关键点来定位人脸特征。
  • 定义对称性计算函数

    • calculate_symmetry函数计算左右眼中心与鼻子的距离,进而评估面部的对称性。对称性分数是左右鼻子距离的差值,值越小表示越对称。
  • 文本绘制函数

    • draw_text函数将OpenCV图像转换为PIL图像,利用PIL绘制中文文本,避免OpenCV不支持中文的问题。
  • 摄像头初始化

    • 使用cv2.VideoCapture(0)打开默认摄像头。
  • 实时视频处理循环

    • 循环读取摄像头帧,将每帧转换为灰度图像以进行人脸检测。
    • 检测到人脸后,提取特征点并计算对称性分数。
    • 根据分数分类对称性状态,并在图像上绘制特征点和状态信息。
  • 帧率计算

    • 计算每帧处理的时间,以便显示实时帧率。
  • 显示结果

    • 使用cv2.imshow显示处理后的图像,用户可以通过按下"q"键退出。
  • 释放资源

    • 结束时释放摄像头和关闭所有窗口。

整体代码

python 复制代码
import cv2
import dlib
import numpy as np
import time
from PIL import Image, ImageDraw, ImageFont

# 加载人脸检测器和特征点预测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("./model/shape_predictor_68_face_landmarks.dat")

def calculate_symmetry(landmarks):
    left_eye = landmarks[36:42]
    right_eye = landmarks[42:48]
    nose = landmarks[30]

    left_eye_center = np.mean(left_eye, axis=0)
    right_eye_center = np.mean(right_eye, axis=0)

    left_nose_distance = np.linalg.norm(left_eye_center - nose)
    right_nose_distance = np.linalg.norm(right_eye_center - nose)

    symmetry_score = abs(left_nose_distance - right_nose_distance)

    return symmetry_score

def draw_text(image, text, position, font_size=30):
    # 将OpenCV图像转换为PIL图像
    pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    draw = ImageDraw.Draw(pil_image)
    font = ImageFont.truetype("simhei.ttf", font_size)  # 使用黑体字体
    draw.text(position, text, font=font, fill=(255, 255, 255, 0))
    return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

# 初始化摄像头
cap = cv2.VideoCapture(0)

while True:
    start_time = time.time()  # 记录开始时间
    ret, frame = cap.read()
    if not ret:
        break

    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    # 检测人脸
    faces = detector(gray)
    for face in faces:
        landmarks = predictor(gray, face)
        landmarks = np.array([[p.x, p.y] for p in landmarks.parts()])

        # 计算对称性
        symmetry_score = calculate_symmetry(landmarks)

        # 对称性分类
        if symmetry_score < 5:
            symmetry_status = "完全对称"
        elif symmetry_score < 10:
            symmetry_status = "较为对称"
        elif symmetry_score < 15:
            symmetry_status = "不太对称"
        else:
            symmetry_status = "高度不对称"

        # 可视化特征点
        for (x, y) in landmarks:
            cv2.circle(frame, (x, y), 2, (0, 255, 0), -1)

        # 在图像上显示对称性分数和状态
        frame = draw_text(frame, f'对称性分数: {symmetry_score:.2f}', (10, 30))
        frame = draw_text(frame, f'状态: {symmetry_status}', (10, 60))

    # 计算并显示FPS
    fps = 1 / (time.time() - start_time)
    frame = draw_text(frame, f'帧率: {fps:.2f}', (10, 90))

    # 显示图像
    cv2.imshow("haha", frame)

    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放摄像头和窗口
cap.release()
cv2.destroyAllWindows()

效果展示

总结

我们构建了一个实时面部对称性分析系统,利用计算机视觉技术将面部特征的对称性可视化。希望这篇博客能够激发大家对计算机视觉的兴趣,并鼓励更多的探索与实践。如果你对该项目有任何疑问或建议,欢迎在评论区留言讨论!让我们一起在计算机视觉的世界中不断前行。

相关推荐
微凉的衣柜几秒前
在 PyTorch 中进行推理时,为什么 `model.eval()` 和 `torch.no_grad()` 需要同时使用?
人工智能·pytorch·python
int WINGsssss6 分钟前
使用系统内NCCL环境重新编译Pytorch
人工智能·pytorch·python
孤单网愈云6 分钟前
11.25Pytorch_手动构建模型实战
人工智能·pytorch·python
ZXF_H1 小时前
pip安装github上的开源软件包
git·python·github·pip
没事别学JAVA1 小时前
使用Python编写Windows系统服务管理脚本,主要用于管理mysql、postgresql等服务
windows·python
yivifu2 小时前
用python将一个扫描pdf文件改成二值图片组成的pdf文件
python·pdf·numpy·pillow·pymupdf
Eric.Lee20213 小时前
数据集-目标检测系列- 装甲车 检测数据集 armored_vehicles >> DataBall
python·算法·yolo·目标检测·装甲车检测
Eric.Lee20213 小时前
数据集-目标检测系列- 牵牛花 检测数据集 morning_glory >> DataBall
人工智能·python·yolo·目标检测·计算机视觉·牵牛花检测
羚羊角uou4 小时前
【C++】list模拟实现(详解)
开发语言·c++