卷积神经网络 循环神经网络

卷积神经网络强大之处

多层网络结构能自动学习输入数据的深层特征,不同层次的网络可以学习到不同层次的特征。浅层学习局部特征(物体的颜色,几何形状),深层学习抽象特征(物体属性,轮廓特点,位置信息)

卷积神经网络的结构

输入层、卷积层(提取特征)、下采样层(空间维度下采样)、全连接层、输出层(softmax层,对全连接后的特征向量进行计算,得到分类评分值)

卷积神经网络和人工神经网络的联系

人工神经网络的神经元按照一维进行排列,卷积神经网络每层神经元按照三维排列,每一层有长宽高,长宽代表输入图像矩阵的长度和高度,高代表该层网络的深度

卷积操作

卷积实际是图像处理技术中的滤波操作。不同于滤波操作中滤波器是事先定义好的,卷积神经网络的卷积核内容是通过梯度下降法训练得到的

Padding操作

卷积操作会遇到在图像边界卷积造成信息丢失的问题,Paddin用来解决这一问题

same padding:对图像矩阵进行边界补充(填0值),使得卷积后得到的特征矩阵与输入矩阵大小一致

valid padding:不进行padding操作

卷积神经网络三大核心思想

局部感知、权值共享、下采样技术

局部感知

感知区域实际上是卷积核的空间大小,每个隐层神经元节点只负责连接到图像某个局部区域,大大减少网络中的权值参数

权值共享

假设卷积核A、B有相同的纹理特征,则实际上只要一个卷积核C就可以代替A和B,共i选哪个卷积核C(即共享相同的权值矩阵),减少网络参数

下采样

对图像进行压缩,减少输出的总像素,缩减图像的空间尺寸规模,减少过拟合可能性,减少计算量,进一步提取高维特征

最大池化下采样:选pooling窗口的最大值作为pooling特征

均值池化下采样:取pooling窗口的均值作为pooling特征

网络参数设计规律

输入层矩阵的大小应该可以被2整除多次

卷积核尽量使用小尺寸卷积核(卷积核大导致特征图减小,且难以提取高维特征)

卷积步长不要过大

卷积层中使用same oadding零填充矩阵边界

pooling层一般使用2*2的窗口,步长为2的max pooling操作

全连接层数不宜超过3层。层数越多,训练难度越大,越容易造成过拟合和梯度消散


循环神经网络

循环递归处理历史数据和对历史记忆进行建模,适用于处理时间、空间序列上有强关联的信息。

随着时间变化动态调整自身的网络状态并不断循环传递,具有记忆功能

随着网络规模增大,对序列数据的记忆能力就会逐渐下降。由于循环神经网络模型基本结构过于简单,不能存储长期记忆,当序列信号在网络中多次传递后,可能引起梯度问题,因此提出长短期记忆网络LSTM(Long Short-Term Memory)

相关推荐
棒棒的皮皮1 天前
【深度学习】YOLO核心原理介绍
人工智能·深度学习·yolo·计算机视觉
哥布林学者1 天前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (二)循环神经网络
深度学习·ai
AI数据皮皮侠1 天前
中国乡村旅游重点村镇数据
大数据·人工智能·python·深度学习·机器学习
民乐团扒谱机1 天前
【微科普】BERT 主题建模 + 多模态分析,解锁阆中古镇评论数据价值
人工智能·深度学习·bert
Keep_Trying_Go1 天前
accelerate 深度学习分布式训练库的使用详细介绍(单卡/多卡分布式训练)
人工智能·pytorch·分布式·深度学习
光羽隹衡1 天前
深度学习----PyTorch框架(手写数字识别案例)
人工智能·pytorch·深度学习
deephub1 天前
DecEx-RAG:过程监督+智能剪枝,让大模型检索推理快6倍
人工智能·深度学习·大语言模型·agent·剪枝·reg
brent4231 天前
DAY44 Dataset和Dataloader类
python·深度学习
人工智能培训1 天前
10分钟了解向量数据库(2)
人工智能·深度学习·机器学习·cnn·智能体
CoovallyAIHub1 天前
当特斯拉FSD在高速狂奔时,SCCA-YOLO如何看清偏远乡村道路的复杂场景?
深度学习·算法·计算机视觉