大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(正在更新...)

章节内容

上节我们完成了如下的内容:

  • Kudu Java API
  • 增删改查 编写案例测试

实现思路

将数据从 Flink 下沉到 Kudu 的基本思路如下:

  • 环境准备:确保 Flink 和 Kudu 环境正常运行,并配置好相关依赖。
  • 创建 Kudu 表:在 Kudu 中定义要存储的数据表,包括主键和列类型。
  • 数据流设计:使用 Flink 的 DataStream API 读取输入数据流,进行必要的数据处理和转换。
  • 写入 Kudu:通过 Kudu 的连接器将处理后的数据写入 Kudu 表。需要配置 Kudu 客户端和表的相关信息。
  • 执行作业:启动 Flink 作业,实时将数据流中的数据写入 Kudu,便于后续查询和分析。

添加依赖

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
        <flink.version>1.11.1</flink.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kudu</groupId>
            <artifactId>kudu-client</artifactId>
            <version>1.17.0</version>
        </dependency>

    </dependencies>
</project>

数据源

java 复制代码
new UserInfo("001", "Jack", 18),
new UserInfo("002", "Rose", 20),
new UserInfo("003", "Cris", 22),
new UserInfo("004", "Lily", 19),
new UserInfo("005", "Lucy", 21),
new UserInfo("006", "Json", 24),

自定义下沉器

java 复制代码
package icu.wzk.kudu;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.*;
import org.apache.log4j.Logger;

import java.io.ByteArrayOutputStream;
import java.io.ObjectOutputStream;
import java.util.Map;


public class MyFlinkSinkToKudu extends RichSinkFunction<Map<String, Object>> {

    private final static Logger logger = Logger.getLogger("MyFlinkSinkToKudu");

    private KuduClient kuduClient;
    private KuduTable kuduTable;

    private String kuduMasterAddr;
    private String tableName;
    private Schema schema;
    private KuduSession kuduSession;
    private ByteArrayOutputStream out;
    private ObjectOutputStream os;

    public MyFlinkSinkToKudu(String kuduMasterAddr, String tableName) {
        this.kuduMasterAddr = kuduMasterAddr;
        this.tableName = tableName;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        out = new ByteArrayOutputStream();
        os = new ObjectOutputStream(out);
        kuduClient = new KuduClient.KuduClientBuilder(kuduMasterAddr).build();
        kuduTable = kuduClient.openTable(tableName);
        schema = kuduTable.getSchema();
        kuduSession = kuduClient.newSession();
        kuduSession.setFlushMode(KuduSession.FlushMode.AUTO_FLUSH_BACKGROUND);
    }

    @Override
    public void invoke(Map<String, Object> map, Context context) throws Exception {
        if (null == map) {
            return;
        }
        try {
            int columnCount = schema.getColumnCount();
            Insert insert = kuduTable.newInsert();
            PartialRow row = insert.getRow();
            for (int i = 0; i < columnCount; i ++) {
                Object value = map.get(schema.getColumnByIndex(i).getName());
                insertData(row, schema.getColumnByIndex(i).getType(), schema.getColumnByIndex(i).getName(), value);
                OperationResponse response = kuduSession.apply(insert);
                if (null != response) {
                    logger.error(response.getRowError().toString());
                }
            }
        } catch (Exception e) {
            logger.error(e);
        }
    }

    @Override
    public void close() throws Exception {
        try {
            kuduSession.close();
            kuduClient.close();
            os.close();
            out.close();
        } catch (Exception e) {
            logger.error(e);
        }
    }

    private void insertData(PartialRow row, Type type, String columnName, Object value) {
        try {
            switch (type) {
                case STRING:
                    row.addString(columnName, value.toString());
                    return;
                case INT32:
                    row.addInt(columnName, Integer.valueOf(value.toString()));
                    return;
                case INT64:
                    row.addLong(columnName, Long.valueOf(value.toString()));
                    return;
                case DOUBLE:
                    row.addDouble(columnName, Double.valueOf(value.toString()));
                    return;
                case BOOL:
                    row.addBoolean(columnName, Boolean.valueOf(value.toString()));
                    return;
                case BINARY:
                    os.writeObject(value);
                    row.addBinary(columnName, out.toByteArray());
                    return;
                case FLOAT:
                    row.addFloat(columnName, Float.valueOf(value.toString()));
                default:
                    throw new UnsupportedOperationException("Unknown Type: " + type);
            }

        } catch (Exception e) {
            logger.error("插入数据异常: " + e);
        }
    }
}

编写实体

java 复制代码
package icu.wzk.kudu;

public class UserInfo {

    private String id;

    private String name;

    private Integer age;

    public UserInfo(String id, String name, Integer age) {
        this.id = id;
        this.name = name;
        this.age = age;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }
}

执行建表

java 复制代码
package icu.wzk.kudu;

import org.apache.kudu.ColumnSchema;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.CreateTableOptions;
import org.apache.kudu.client.KuduClient;
import org.apache.kudu.client.KuduException;

import java.util.ArrayList;
import java.util.List;

public class KuduCreateTable {

    public static void main(String[] args) throws KuduException {
        String masterAddress = "localhost:7051,localhost:7151,localhost:7251";
        KuduClient.KuduClientBuilder kuduClientBuilder = new KuduClient.KuduClientBuilder(masterAddress);
        KuduClient kuduClient = kuduClientBuilder.build();

        String tableName = "user";
        List<ColumnSchema> columnSchemas = new ArrayList<>();
        ColumnSchema id = new ColumnSchema
                .ColumnSchemaBuilder("id", Type.INT32)
                .key(true)
                .build();
        columnSchemas.add(id);
        ColumnSchema name = new ColumnSchema
                .ColumnSchemaBuilder("name", Type.STRING)
                .key(false)
                .build();
        columnSchemas.add(name);
        ColumnSchema age = new ColumnSchema
                .ColumnSchemaBuilder("age", Type.INT32)
                .key(false)
                .build();
        columnSchemas.add(age);

        Schema schema = new Schema(columnSchemas);
        CreateTableOptions options = new CreateTableOptions();
        // 副本数量为1
        options.setNumReplicas(1);
        List<String> colrule = new ArrayList<>();
        colrule.add("id");
        options.addHashPartitions(colrule, 3);

        kuduClient.createTable(tableName, schema, options);
        kuduClient.close();
    }

}

主逻辑代码

java 复制代码
package icu.wzk.kudu;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.HashMap;
import java.util.Map;
import java.util.stream.Stream;

public class SinkToKuduTest {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<UserInfo> dataSource = env.fromElements(
                new UserInfo("001", "Jack", 18),
                new UserInfo("002", "Rose", 20),
                new UserInfo("003", "Cris", 22),
                new UserInfo("004", "Lily", 19),
                new UserInfo("005", "Lucy", 21),
                new UserInfo("006", "Json", 24)
        );
        SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource
                .map(new MapFunction<UserInfo, Map<String, Object>>() {
                    @Override
                    public Map<String, Object> map(UserInfo value) throws Exception {
                        Map<String, Object> map = new HashMap<>();
                        map.put("id", value.getId());
                        map.put("name", value.getName());
                        map.put("age", value.getAge());
                        return map;
                    }
                });

        String kuduMasterAddr = "localhost:7051,localhost:7151,localhost:7251";
        String tableInfo = "user";
        mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));

        env.execute("SinkToKuduTest");
    }

}

解释分析

环境设置

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();:初始化 Flink 的执行环境,这是 Flink 应用的入口。

数据源创建

DataStreamSource dataSource = env.fromElements(...):创建了一个包含多个 UserInfo 对象的数据源,模拟了一个输入流。

数据转换

SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource.map(...):使用 map 函数将 UserInfo 对象转换为 Map<String, Object>,便于后续处理和写入 Kudu。每个 UserInfo 的属性都被放入一个 HashMap 中。

Kudu 配置信息

String kuduMasterAddr = "localhost:7051,localhost:7151,localhost:7251"; 和 String tableInfo = "user";:定义 Kudu 的主节点地址和目标表的信息。

数据下沉

mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));:将转换后的数据流添加到 Kudu 的自定义 Sink 中。MyFlinkSinkToKudu 类应该实现了将数据写入 Kudu 的逻辑。

执行作业

env.execute("SinkToKuduTest");:启动 Flink 作业,执行整个数据流处理流程。

测试运行

  • 先运行建表
  • 再运行主逻辑

我们建表之后,确认user表存在。然后我们运行Flink程序,将数据写入Kudu。

确认有表后,执行 Flink 程序:

注意事项

  • 并发性:根据 Kudu 集群的规模和配置,可以调整 Flink 作业的并发性,以提高写入性能。
  • 批量写入:Kudu 支持批量插入,可以通过适当配置 Flink 的 sink 来提高性能。
  • 故障处理:确保在作业中处理异常和重试逻辑,以确保数据不会丢失。
  • 监控与调试:使用 Flink 的监控工具和 Kudu 的工具(如 Kudu UI)来监控数据流和性能。
相关推荐
管理大亨5 分钟前
ELK + Redis Docker 企业级部署落地方案
大数据·运维·elk·elasticsearch·docker·jenkins
Jinkxs10 分钟前
Java 架构 02:DDD 领域模型设计实战(限界上下文划分)
java·开发语言·架构
GGBondlctrl13 分钟前
【Redis】从单机架构到分布式,回溯架构的成长设计美学
分布式·缓存·架构·微服务架构·单机架构
百锦再13 分钟前
国产数据库的平替亮点——关系型数据库架构适配
android·java·前端·数据库·sql·算法·数据库架构
爱笑的眼睛1122 分钟前
文本分类的范式演进:从统计概率到语言模型提示工程
java·人工智能·python·ai
星川皆无恙27 分钟前
基于知识图谱+深度学习的大数据NLP医疗知识问答可视化系统(全网最详细讲解及源码/建议收藏)
大数据·人工智能·python·深度学习·自然语言处理·知识图谱
周杰伦_Jay34 分钟前
【Go/Python/Java】基础语法+核心特性对比
java·python·golang
PM老周34 分钟前
DORA2025:如何用AI提升研发效能(以 ONES MCP Server 为例)
大数据·人工智能
sszdlbw36 分钟前
后端springboot框架入门学习--第一篇
java·spring boot·学习
皇族崛起37 分钟前
【众包 + AI智能体】AI境生态巡查平台边防借鉴价值专项调研——以广西边境线治理为例
大数据·人工智能