大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(正在更新...)

章节内容

上节我们完成了如下的内容:

  • Kudu Java API
  • 增删改查 编写案例测试

实现思路

将数据从 Flink 下沉到 Kudu 的基本思路如下:

  • 环境准备:确保 Flink 和 Kudu 环境正常运行,并配置好相关依赖。
  • 创建 Kudu 表:在 Kudu 中定义要存储的数据表,包括主键和列类型。
  • 数据流设计:使用 Flink 的 DataStream API 读取输入数据流,进行必要的数据处理和转换。
  • 写入 Kudu:通过 Kudu 的连接器将处理后的数据写入 Kudu 表。需要配置 Kudu 客户端和表的相关信息。
  • 执行作业:启动 Flink 作业,实时将数据流中的数据写入 Kudu,便于后续查询和分析。

添加依赖

xml 复制代码
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
        <flink.version>1.11.1</flink.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kudu</groupId>
            <artifactId>kudu-client</artifactId>
            <version>1.17.0</version>
        </dependency>

    </dependencies>
</project>

数据源

java 复制代码
new UserInfo("001", "Jack", 18),
new UserInfo("002", "Rose", 20),
new UserInfo("003", "Cris", 22),
new UserInfo("004", "Lily", 19),
new UserInfo("005", "Lucy", 21),
new UserInfo("006", "Json", 24),

自定义下沉器

java 复制代码
package icu.wzk.kudu;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.*;
import org.apache.log4j.Logger;

import java.io.ByteArrayOutputStream;
import java.io.ObjectOutputStream;
import java.util.Map;


public class MyFlinkSinkToKudu extends RichSinkFunction<Map<String, Object>> {

    private final static Logger logger = Logger.getLogger("MyFlinkSinkToKudu");

    private KuduClient kuduClient;
    private KuduTable kuduTable;

    private String kuduMasterAddr;
    private String tableName;
    private Schema schema;
    private KuduSession kuduSession;
    private ByteArrayOutputStream out;
    private ObjectOutputStream os;

    public MyFlinkSinkToKudu(String kuduMasterAddr, String tableName) {
        this.kuduMasterAddr = kuduMasterAddr;
        this.tableName = tableName;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        out = new ByteArrayOutputStream();
        os = new ObjectOutputStream(out);
        kuduClient = new KuduClient.KuduClientBuilder(kuduMasterAddr).build();
        kuduTable = kuduClient.openTable(tableName);
        schema = kuduTable.getSchema();
        kuduSession = kuduClient.newSession();
        kuduSession.setFlushMode(KuduSession.FlushMode.AUTO_FLUSH_BACKGROUND);
    }

    @Override
    public void invoke(Map<String, Object> map, Context context) throws Exception {
        if (null == map) {
            return;
        }
        try {
            int columnCount = schema.getColumnCount();
            Insert insert = kuduTable.newInsert();
            PartialRow row = insert.getRow();
            for (int i = 0; i < columnCount; i ++) {
                Object value = map.get(schema.getColumnByIndex(i).getName());
                insertData(row, schema.getColumnByIndex(i).getType(), schema.getColumnByIndex(i).getName(), value);
                OperationResponse response = kuduSession.apply(insert);
                if (null != response) {
                    logger.error(response.getRowError().toString());
                }
            }
        } catch (Exception e) {
            logger.error(e);
        }
    }

    @Override
    public void close() throws Exception {
        try {
            kuduSession.close();
            kuduClient.close();
            os.close();
            out.close();
        } catch (Exception e) {
            logger.error(e);
        }
    }

    private void insertData(PartialRow row, Type type, String columnName, Object value) {
        try {
            switch (type) {
                case STRING:
                    row.addString(columnName, value.toString());
                    return;
                case INT32:
                    row.addInt(columnName, Integer.valueOf(value.toString()));
                    return;
                case INT64:
                    row.addLong(columnName, Long.valueOf(value.toString()));
                    return;
                case DOUBLE:
                    row.addDouble(columnName, Double.valueOf(value.toString()));
                    return;
                case BOOL:
                    row.addBoolean(columnName, Boolean.valueOf(value.toString()));
                    return;
                case BINARY:
                    os.writeObject(value);
                    row.addBinary(columnName, out.toByteArray());
                    return;
                case FLOAT:
                    row.addFloat(columnName, Float.valueOf(value.toString()));
                default:
                    throw new UnsupportedOperationException("Unknown Type: " + type);
            }

        } catch (Exception e) {
            logger.error("插入数据异常: " + e);
        }
    }
}

编写实体

java 复制代码
package icu.wzk.kudu;

public class UserInfo {

    private String id;

    private String name;

    private Integer age;

    public UserInfo(String id, String name, Integer age) {
        this.id = id;
        this.name = name;
        this.age = age;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }
}

执行建表

java 复制代码
package icu.wzk.kudu;

import org.apache.kudu.ColumnSchema;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.CreateTableOptions;
import org.apache.kudu.client.KuduClient;
import org.apache.kudu.client.KuduException;

import java.util.ArrayList;
import java.util.List;

public class KuduCreateTable {

    public static void main(String[] args) throws KuduException {
        String masterAddress = "localhost:7051,localhost:7151,localhost:7251";
        KuduClient.KuduClientBuilder kuduClientBuilder = new KuduClient.KuduClientBuilder(masterAddress);
        KuduClient kuduClient = kuduClientBuilder.build();

        String tableName = "user";
        List<ColumnSchema> columnSchemas = new ArrayList<>();
        ColumnSchema id = new ColumnSchema
                .ColumnSchemaBuilder("id", Type.INT32)
                .key(true)
                .build();
        columnSchemas.add(id);
        ColumnSchema name = new ColumnSchema
                .ColumnSchemaBuilder("name", Type.STRING)
                .key(false)
                .build();
        columnSchemas.add(name);
        ColumnSchema age = new ColumnSchema
                .ColumnSchemaBuilder("age", Type.INT32)
                .key(false)
                .build();
        columnSchemas.add(age);

        Schema schema = new Schema(columnSchemas);
        CreateTableOptions options = new CreateTableOptions();
        // 副本数量为1
        options.setNumReplicas(1);
        List<String> colrule = new ArrayList<>();
        colrule.add("id");
        options.addHashPartitions(colrule, 3);

        kuduClient.createTable(tableName, schema, options);
        kuduClient.close();
    }

}

主逻辑代码

java 复制代码
package icu.wzk.kudu;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.HashMap;
import java.util.Map;
import java.util.stream.Stream;

public class SinkToKuduTest {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<UserInfo> dataSource = env.fromElements(
                new UserInfo("001", "Jack", 18),
                new UserInfo("002", "Rose", 20),
                new UserInfo("003", "Cris", 22),
                new UserInfo("004", "Lily", 19),
                new UserInfo("005", "Lucy", 21),
                new UserInfo("006", "Json", 24)
        );
        SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource
                .map(new MapFunction<UserInfo, Map<String, Object>>() {
                    @Override
                    public Map<String, Object> map(UserInfo value) throws Exception {
                        Map<String, Object> map = new HashMap<>();
                        map.put("id", value.getId());
                        map.put("name", value.getName());
                        map.put("age", value.getAge());
                        return map;
                    }
                });

        String kuduMasterAddr = "localhost:7051,localhost:7151,localhost:7251";
        String tableInfo = "user";
        mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));

        env.execute("SinkToKuduTest");
    }

}

解释分析

环境设置

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();:初始化 Flink 的执行环境,这是 Flink 应用的入口。

数据源创建

DataStreamSource dataSource = env.fromElements(...):创建了一个包含多个 UserInfo 对象的数据源,模拟了一个输入流。

数据转换

SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource.map(...):使用 map 函数将 UserInfo 对象转换为 Map<String, Object>,便于后续处理和写入 Kudu。每个 UserInfo 的属性都被放入一个 HashMap 中。

Kudu 配置信息

String kuduMasterAddr = "localhost:7051,localhost:7151,localhost:7251"; 和 String tableInfo = "user";:定义 Kudu 的主节点地址和目标表的信息。

数据下沉

mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));:将转换后的数据流添加到 Kudu 的自定义 Sink 中。MyFlinkSinkToKudu 类应该实现了将数据写入 Kudu 的逻辑。

执行作业

env.execute("SinkToKuduTest");:启动 Flink 作业,执行整个数据流处理流程。

测试运行

  • 先运行建表
  • 再运行主逻辑

我们建表之后,确认user表存在。然后我们运行Flink程序,将数据写入Kudu。

确认有表后,执行 Flink 程序:

注意事项

  • 并发性:根据 Kudu 集群的规模和配置,可以调整 Flink 作业的并发性,以提高写入性能。
  • 批量写入:Kudu 支持批量插入,可以通过适当配置 Flink 的 sink 来提高性能。
  • 故障处理:确保在作业中处理异常和重试逻辑,以确保数据不会丢失。
  • 监控与调试:使用 Flink 的监控工具和 Kudu 的工具(如 Kudu UI)来监控数据流和性能。
相关推荐
coderSong256835 分钟前
Java高级 |【实验八】springboot 使用Websocket
java·spring boot·后端·websocket
Mr_Air_Boy1 小时前
SpringBoot使用dynamic配置多数据源时使用@Transactional事务在非primary的数据源上遇到的问题
java·spring boot·后端
豆沙沙包?2 小时前
2025年- H77-Lc185--45.跳跃游戏II(贪心)--Java版
java·开发语言·游戏
mazhafener1232 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享2 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
年老体衰按不动键盘2 小时前
快速部署和启动Vue3项目
java·javascript·vue
咖啡啡不加糖2 小时前
Redis大key产生、排查与优化实践
java·数据库·redis·后端·缓存
liuyang-neu3 小时前
java内存模型JMM
java·开发语言
UFIT3 小时前
NoSQL之redis哨兵
java·前端·算法
刘 大 望3 小时前
数据库-联合查询(内连接外连接),子查询,合并查询
java·数据库·sql·mysql