代码随想录第二十天:动态规划、斐波那契数列、爬楼梯、最小体力爬楼梯

1.动态规划理论

理论讲解链接:代码随想录 (programmercarl.com)

对于动态规划问题,可以拆解为如下五步曲

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

2.斐波那契数列

dp数组元素的含义是对应斐波那契数列的元素。

递推公式F(n) = F(n - 1) + F(n - 2)。

初始化F(0) = 0,F(1) = 1。

遍历顺序从前向后。

代码如下:

cpp 复制代码
class Solution{
public:
    int fib(int n) {
        if (n == 0 || n == 1) return n;
        vector<int> dp(n + 1, 0);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i < n + 1; ++i) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

3.爬楼梯

本题的关键逻辑是当前阶梯,可以由上一节阶梯走一步或者由上上一节阶梯走两步得来,所以走到当前阶梯的方法是去上一节阶梯的方法加上去上上一节阶梯的方法。

因此得到递推公式:F(n) = F(n - 1) + F(n - 2),所以本题所求就是斐波那契数列。

代码如下:

cpp 复制代码
class Solution {
public:
    int climbStairs(int n) {
        if (n == 0 || n == 1) return n;
        vector<int> dp(n + 1, 0);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i < n + 1; ++i) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

3.最小代价爬楼梯

本题为每个楼梯添加了攀爬的代价,可以选择从前两层开始爬。

爬到每层的代价是爬到前一层的代价加上前一层继续前进花费的代价,或者是前两层的代价加上继续前进的代价,最小代价取二者最小值即可。

因此递推公式:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

代码如下:

cpp 复制代码
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        if (cost.size() == 0 || cost.size() == 1) return 0;
        vector<int> dp(cost.size(), 0);
        for (int i = 0; i < dp.size() ; ++i) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size() - 1];
    }
};
相关推荐
燃于AC之乐3 小时前
我的算法修炼之路--4 ———我和算法的爱恨情仇
算法·前缀和·贪心算法·背包问题·洛谷
MM_MS9 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
独自破碎E9 小时前
【二分法】寻找峰值
算法
mit6.82410 小时前
位运算|拆分贪心
算法
ghie909010 小时前
基于MATLAB的TLBO算法优化实现与改进
开发语言·算法·matlab
恋爱绝缘体110 小时前
2020重学C++重构你的C++知识体系
java·开发语言·c++·算法·junit
wuk99810 小时前
VSC优化算法MATLAB实现
开发语言·算法·matlab
Z1Jxxx11 小时前
加密算法加密算法
开发语言·c++·算法
乌萨奇也要立志学C++11 小时前
【洛谷】递归初阶 三道经典递归算法题(汉诺塔 / 占卜 DIY/FBI 树)详解
数据结构·c++·算法
vyuvyucd11 小时前
C++引用:高效编程的别名利器
算法