选读算法导论5.2 指示器随机变量

为了分析包括包括雇佣分析在内的许多算法,我们将使用指示器随机变量,它为概率和期望之间的转换提供了一个便利的方法,给定一个样本空间S和事件A,那么事件A对应的指示器随机变量:

Xa = 1 如果A发生

0 如果A没有发生

E[Xa] = Pr{A}

1.指示器随机变量将所求的随机变量X分解成了许多单个的事件,对于每一个事件一一的求期望,加起来即可。

2.注意随机变量指示器怎么用,实际上就是将求一个随机变量的期望,分解到一个个具体的事件,每一个小事件的期望往往容易求,所有小事件的期望加起来就是总得期望。其实是从另一个角度看问题。

转载于dianlu7964的算法导论5.2 指示器随机变量

下面我通过列举题目通过运用这种方法来更快理解

Bubble Sort - 洛谷

给定n,求所有[1,n]排列中逆序对个数的平均值,以分数形式输出。

还可以转化题意为期望逆序对个数是多少?

单个事件就是单独一个对是逆序对

那么总共有几个呢,应该是

Game on Tree - 洛谷

给定一棵有根树,结点编号从 11 到 nn。根结点为 11 号结点。

对于每一次操作,等概率的选择一个尚未被删去的结点并将它及其子树全部删去。当所有结点被删除之后,游戏结束;也就是说,删除 11 号结点后游戏即结束。

要求求出删除所有结点的期望操作次数。

单个事件选择i节点可以直接删除树,因为选了祖先节点就不会选i节点了,因此我们选i节点要比祖先节点先选,这个概率是

未完待续

相关推荐
ylfhpy14 分钟前
Java面试黄金宝典30
java·数据库·算法·面试·职场和发展
明.24419 分钟前
DFS 洛谷P1123 取数游戏
算法·深度优先
简简单单做算法2 小时前
基于mediapipe深度学习和限定半径最近邻分类树算法的人体摔倒检测系统python源码
人工智能·python·深度学习·算法·分类·mediapipe·限定半径最近邻分类树
Tisfy3 小时前
LeetCode 2360.图中的最长环:一步一打卡(不撞南墙不回头) - 通过故事讲道理
算法·leetcode··题解
LuckyAnJo3 小时前
Leetcode-100 链表常见操作
算法·leetcode·链表
双叶8365 小时前
(C语言)虚数运算(结构体教程)(指针解法)(C语言教程)
c语言·开发语言·数据结构·c++·算法·microsoft
工一木子5 小时前
大厂算法面试 7 天冲刺:第5天- 递归与动态规划深度解析 - 高频面试算法 & Java 实战
算法·面试·动态规划
invincible_Tang6 小时前
R格式 (15届B) 高精度
开发语言·算法·r语言
独好紫罗兰7 小时前
洛谷题单2-P5715 【深基3.例8】三位数排序-python-流程图重构
开发语言·python·算法
序属秋秋秋8 小时前
算法基础_基础算法【高精度 + 前缀和 + 差分 + 双指针】
c语言·c++·学习·算法