回归正则化

Lasso回归(Least Absolute Shrinkage and Selection Operator)是一种线性回归方法,它通过添加L1正则化项来约束模型的复杂性。具体来说,Lasso回归的目标是最小化以下损失函数:

其中,第一项是均方误差,第二项是L1正则化项,laimuta是正则化强度的超参数,Wj是回归系数。

L1正则化的特点是能有效地将某些回归系数缩减到零,从而实现特征选择,这对于处理高维数据非常有用。
正则化的基本概念

正则化的核心思想是在模型的损失函数中增加一个惩罚项,以约束模型的参数。这个惩罚项通常与模型参数的大小相关。正则化方法有多种,最常见的包括L1正则化(Lasso)和L2正则化(Ridge)。

除了L1正则化(Lasso),还有其他正则化方法,包括:

  1. L2正则化(Ridge回归)

    • 添加平方和的惩罚项,形式为 (\lambda \sum_{j=1}^{p} w_j^2)。
    • Ridge回归不会将系数缩减到零,更适合处理多重共线性问题。
  2. 弹性网(Elastic Net)

    • 结合了L1和L2正则化的特性,损失函数为:

    • 在特征选择和处理多重共线性方面都有优势。

区别与作用

  • L1正则化(Lasso):用于特征选择和稀疏性,适合高维数据。
  • L2正则化(Ridge):用于处理多重共线性,保持所有特征,但减少其影响。
  • 弹性网 :结合了两者的优点,适用于特征较多且存在多重共线性的情况。
    选择具有最大类间方差的阈值作为最佳阈值的原因,源于Otsu方法的理论基础。其核心思想是通过最大化前景和背景之间的区分度,以便实现最佳的图像分割。下面是具体的解释:

类间方差的含义

类间方差(between-class variance)度量的是前景和背景的灰度值分布之间的差异。具体来说,当选择一个阈值将图像分为前景和背景时,类间方差可以表示为这两类之间的灰度均值差异的平方,乘以它们各自的权重。

  1. 权重:前景和背景的权重(即各自的像素比例)。
  2. 均值:每一类的均值(前景和背景的平均灰度值)。

公式为:

最大化类间方差的原因

  • 更好的分离:当类间方差最大时,表示前景和背景的均值差异最大,这意味着它们在灰度空间中分隔得更开。这种情况下,前景和背景的像素更容易被区分,从而提高二值化的效果。

  • 减少重叠:最大化类间方差有助于减少前景和背景之间的重叠区域,从而使得二值化后的图像更加清晰和准确。

实践中的表现

在实践中,Otsu方法能够自适应地选择最佳阈值,尤其适用于那些具有显著灰度差异的图像。通过选择最大类间方差的阈值,可以有效地提高分割效果,避免人为设置阈值带来的偏差。

相关推荐
视界先声1 小时前
如何选择合适的养老服务机器人
人工智能·物联网·机器人
RPA机器人就选八爪鱼1 小时前
RPA财务机器人:重塑财务效率,数字化转型的核心利器
大数据·数据库·人工智能·机器人·rpa
腾讯WeTest2 小时前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c2 小时前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费2 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`3 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真3 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心3 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客3 小时前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP3 小时前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程